Free Access
Issue |
Europhysics News
Volume 53, Number 2, 2022
Machine learning in physics
|
|
---|---|---|
Page(s) | 26 - 29 | |
Section | Features | |
DOI | https://doi.org/10.1051/epn/2022206 | |
Published online | 27 April 2022 |
- S. Adrian-Martinez et al. (KM3NeT Collaboration), Journal of Physics G: Nuclear and Particle Physics 43, 084001 (2016), https://doi.org/10.1088/0954-3899/43/8/084001 [CrossRef] [Google Scholar]
- M. Ageron et al. (ANTARES Collaboration), Nuclear Instruments and Methods in Physics Research A 656, 11 (2011), https://doi.org/10.1016/j.nima.2011.06.103 [CrossRef] [Google Scholar]
- S. Aiello et al. (KM3NeT Collaboration), The KM3NeT multi-PMT optical module, arXiv:2203.10048, https://doi.org/10.48550/arXiv.2203.10048 [Google Scholar]
- S. Aiello et al. (KM3NeT Collaboration), JINST 15, 11027 (2020), https://doi.org/10.1088/1748-0221/15/11/P11027 [CrossRef] [Google Scholar]
- T. Chen and C. Guestrin, XGBoost: A scalable tree boosting system, Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, https://doi.org/10.1145/2939672.2939785 [Google Scholar]
- S. Aiello et al. (KM3NeT Collaboration), JINST 15, 10005 (2020), https://doi.org/10.1088/1748-0221/15/10/P10005 [CrossRef] [Google Scholar]
- M. Moser and S. Reck, OrcaNet: A training organizer for Deep Learning in KM3NeT, https://github.com/ViaFerrata/OrcaNet [Google Scholar]
- H. Qu and L. Gouskos, Phys. Rev. D 101, 056019 (2020), https://doi. org/10.1103/physrevd.101.056019; for the KM3NeT package see: https://github.com/StefReck/MEdgeConv [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.