Breaking up: a convoluted drama at nuclear scale, too (Vol. 48 No. 1)

Schematic distribution of the breakup

Regardless of the scenario, breaking up is dramatic. Take for example the case of carbon (12C) splitting into three nuclei of helium. Until now, due to the poor quality of data and limited detection capabilities, physicists did not know whether the helium fragments were the object of a direct breakup in multiple fragments up front or were formed in a sequence of successive fragmentations. The question has been puzzling physicists for some time. Now, the authors have used a state-of-the-art detector capable of measuring, for the first time, the precise disintegration of the 12C into three helium nuclei. Their findings, released in a study published recently, reveal a sequence of fragmentations, relevant to developing a specific kind of fusion reactions and in astrophysics. Their findings could have applications in devising an alternative to neutron-producing fusion reactions, a process called aneutronic fusion. In addition, they could help to improve our theoretical understanding of an extremely important reaction in astrophysics: the time-reversed process involving the fusion of three helium nuclei into 12C.

H.K. Laursen, H.O.U. Fynbo, O.S. Kirsebom, K.S. Madsbøl and K. Riisager, Complete kinematical study of the 3α breakup of the 16.11 MeV State in 12C, Eur. Phys. J. A, 52, 271 (2016)