Back to basics with thermoelectric power (Vol. 47 No. 3)

New study highlights the role of electron diffusivity when turning waste heat into electricity
Many phenomena in physics, though well-known, are not necessarily widely understood. That’s the case with thermoelectricity, which harnesses waste heat by coupling heat flux and electric current. However, understanding such phenomena is important in order to leave the door open for discovering novel manifestations of them. Thus, even today, physicists working in the area of thermoelectricity continue to ask fundamental questions about the underlying physical process. For example, in a recent study, the authors questioned the nature of the force that puts electrons to work when a temperature difference is applied across a thermoelectric material. Now, they have published a study showing that the force that puts electrons to work to harness the waste heat is linked to the ability of electrons to diffuse through the material. Potential applications in the field of electrical power production from waste heat include thermoelectric devices designed to boost power over a range spanning ten orders of magnitude: typically from microwatts to several kilowatts.
Y. Apertet, H. Ouerdane, C. Goupil and Ph. Lecoeur, A note on the electrochemical nature of thermoelectric power, Eur. Phys. J. Plus 131, 76 (2016)
[Abstract]