Green photon beams more agile than optical tweezers (Vol. 44 No. 6)

Charge-density computation of butane molecules

A new manipulation tool exploits the fact that when light interacts with matter, it creates a force that produces material properties in macromolecules and biological cells.

Romanian scientists have discovered a novel approach for the optical manipulation of macromolecules. The authors had the idea to use green photon beams. With them, it is possible to perform optical manipulation of macrostructures, such as biological proteins, with greater precision than with optical tweezers.

The authors used high-density green photon beams (HDGP) capable of inducing a polarisation effect within complex macrostructures. They found that the effect of the beam leads to ‘biological optical matter’. This includes newly-organised material structures, such as molecular aggregates and micro-particles, and can feature new characteristics such as antioxidant properties. The authors realised that this approach covers a larger area than focused tweezers and is capable of organising mesoscopic matter into a new 3D molecular architecture.

S. Comorosan, S. Polosan, I. Popescu, I. Stamatin, E. Ionescu, S. Avramescu, L. Cristian Cune and M. Apostol, 'Optical manipulation of complex molecular systems by high density green photons: experimental and theoretical evidence', Eur. Phys. J. B, 86, 232 (2013)