Inhibitory neurons retrieving physical properties from two-colour laser experiments (Vol. 51, No. 1)

Extracting ionisation yields following ultrafast interactions

Useful information about ultrafast light-matter interactions is buried deep in the signals produced by two-colour pump-probe experiments, and requires sophisticated techniques to disentangle it.

When photons of light interact with particles of matter, a diverse variety of physical processes can unfold in ultrafast timescales. To explore them, physicists currently use ‘two-colour pump-probe’ experiments, in which an ultrashort, infrared laser pulse is first fired at a material, causing its constituent electrons to move. After a controllable delay, this pulse is followed by a train of similarly short, extreme-ultraviolet pulses, ionising the material. By measuring the total ionisation following the pulses along with the resulting electron energy spectra, physicists can theoretically learn more about ultrafast, light-matter interactions. In new research published in EPJ D, an international team of physicists, led by Eric Suraud at the University of Toulouse, discovered that these signals are in fact dominated by the less interesting interplay between electrons and the initial infrared laser. They show that more useful information is buried deeper within these signals.

T. Brabec, P. M. Dinh, C. Z. Gao, C. R. McDonald, P-G. Reinhard, E. Suraud, Physical mechanisms encoded in photoionization yield from IR+XUV setups, European Physical Journal D 73, 212 (2019)