Fragmenting ions and radiation sensitizers (Vol. 50, No. 5-6)

Fragmenting ions and radiation sensitizers
Mass spectrum of 5-fluorouracil showing ions produced by impact with high-energy electrons.

A new study using mass spectrometry is helping piece together what happens when DNA that has been sensitized by the oncology drug 5-fluorouracil is subjected to the ionising radiation used in radiotherapy.

The anti-cancer drug 5-fluorouracil (5FU) acts as a radiosensitizer: it is rapidly taken up into the DNA of cancer cells, making the cells more sensitive to radiotherapy. However, little is known about the precise mechanism through which radiation damages cells. A team of scientists have now used mass spectrometry to shed some light on this process; their work was recently published in EPJD. A full understanding of this process could ultimately lead to new ways of protecting normal tissues from the radiation damage caused by essential cancer treatments.

P.J.M. van der Burgt, M.A. Brown, J. Bockova, A. Rebelo, M. Ryszka, J-C. Poully and S. Eden, Fragmentation processes of ionized 5-fluorouracil in the gas phase and within clusters, Eur. Phys. J. D 73, 184 (2019)