Infinite number of quantum particles gives clues to big-picture behaviour at large scale (Vol. 50, No. 3)

Infinite number of quantum particles gives clues to big-picture behaviour at large scale
Werner Heisenberg

Scientists gain a deeper understanding of phenomena at macroscopic scale by simulating the consequences of having an infinite number of physical phenomena at quantum scale.

In quantum mechanics, the Heisenberg uncertainty principle prevents an external observer from measuring both the position and speed (referred to as momentum) of a particle at the same time. They can only know with a high degree of certainty either one or the other—unlike what happens at large scales where both are known. To identify a given particle’s characteristics, physicists introduced the notion of quasi-distribution of position and momentum. This approach was an attempt to reconcile quantum-scale interpretation of what is happening in particles with the standard approach used to understand motion at normal scale, a field dubbed classical mechanics. In a new study published recently, the authors reverse this approach; starting with quantum mechanical rules, they explore how to derive an infinite number of quasi-distributions, to emulate the classical mechanics approach. This approach is also applicable to a number of other variables found in quantum-scale particles, including particle spin.

J. S. Ben-Benjamin, L. Cohen and M. O. Scully, From von Neumann to Wigner and beyond, Eur. Phys. J. Spec. Top. 227, 2171 (2019)
[Abstract]