Liquid jets break up more readily on a substrate (Vol. 50, No. 3)

Liquid jets break up more readily on a substrate

Using computational models to investigate how liquid drops behave on surfaces

Whether we're aware of it or not, in day-to-day life we often witness an intriguing phenomenon: the breakup of jets of liquid into chains of droplets. It happens when it rains, for example, and it is important for inkjet printers. However, little is known about what happens when a liquid jet, also known as a liquid filament, breaks up on top of a substrate. According to a new study, the presence of a nearby surface changes the way the filament breaks up into smaller droplets. In a new paper published recently, computer simulations are used to show that a filament is more likely to break up near a surface. When a filament is broken into multiple droplets, the structure is unstable because surface tension means liquids tend to shrink to have the smallest-possible surface area.

A. Dziedzic, M. Nakrani, B. Ezra, M. Syed, S. Popinet, and S. Afkhami (2019), Breakup of finite-size liquid filaments: Transition from no-breakup to breakup including substrate effects, Eur. Phys. J. E 42 ,18 (2018)