Rogue waves as negative entropy events (Vol. 49, No. 2)

Illustration of a rogue wave in the Japan Sea

It is commonly stated that oceanic rogue waves appear from nowhere and quickly disappear without a trace. A new approach to the complexity of wave surfaces could work out a thermodynamic framework to predict rogue waves. Attributing to each wave a local entropy, we find that negative values are closely linked to rogue waves and positive ones to small wave heights. Strikingly, the statistics of these entropy values altogether follow the integral fluctuation theorem. This law is known to hold for microscopic systems, and holds quite surprisingly for our macroscopic wave systems, too. We address the concrete examples of the North Sea, with no rogue waves, and of the Sea of Japan, which include a measured rogue. It is shown how these two sea states can be well distinguished by their entropy statistics. Such a comparison opens the possibility for better predicting the occurrence of rogue waves in specific ocean spots. The whole work is based on a stochastic multi-point approach unfolding a hierarchical order of height fluctuations of the wave surface, which also allow short time forecasting of rogue wave events.

A. Hadjihoseini, P. G. Lind, N. Mori, N. P. Hoffmann and J. Peinke, Rogue waves and entropy consumption, EPL 120, 30008 (2017)