Spatial scales in electricity system modelling (Vol. 49, No. 1)

Coarse-grained network representation of the European electricity grid.

Models of large-scale electricity systems often only incorporate a certain level of spatial detail regarding the distribution of generation and consumption. This coarse-graining due to constrained availability of data or computational limitations also applies to the representation of the power grid. In particular, the network topology as well as the load and generation patterns below a given spatial scale have to be aggregated into representative system nodes. But how does this coarse-graining affect what simulations tell us about the system? This important question has been addressed using a simplified, but spatially-detailed model of the European electricity system with a high share of renewable generation. Applying a clustering algorithm, the transmission needs of the system are derived on various spatial scales. Surprisingly, it turns out that the transmission infrastructure costs only vary weakly under the coarse-graining procedure. This can be understood using an analytical approach, which yields approximate spatial scaling laws for measures of transmission infrastructure in electricity system models.

M. Schäfer, S. B. Siggaard, K. Zhu, C. R. Poulsen and M. Greiner, Scaling of transmission capacities in coarse-grained renewable electricity networks, EPL 119, 38004 (2017)
[Abstract]