A new generation of chiral nuclear forces (Vol. 46 No. 4)

A new generation of chiral nuclear forces
Neutron-proton differential cross section at Elab=143 MeV up to fourth order in the chiral expansion.

Chiral effective field theory provides a systematically improvable perturbative approach to deriving nuclear forces in harmony with the symmetries of Quantum Chromodynamics. Combined with modern few- and many-body methods, this framework represents a commonly accepted procedure for ab initio studies of nuclear structure and reactions.

In this work, the authors introduce a new generation of nucleon-nucleon forces up to fourth order in the chiral expansion. By employing an appropriate regularization in coordinate space, which maintains the analytic structure of the amplitude, the authors succeed in significantly reducing the amount of finite-cutoff artefacts. In addition, a simple approach to estimating the theoretical uncertainty in few- and many-nucleon calculations from the truncation of the chiral expansion is formulated. By calculating various two-nucleon scattering and bound-state observables, the authors verify that the results at different chiral orders and for different values of the regulator are indeed consistent with each other and with the experimental data. The new generation of chiral nuclear forces is expected to provide an excellent starting point for applications in nuclear physics.

E. Epelbaum, H. Krebs and U.-G. Meißner, Improved chiral nucleon-nucleon potential up to next-to-next-to-next-to-leading order, Eur. Phys. J. A, 51, 53 (2015)
[Abstract]