Graphene plasmonics for semiconductor photonic crystals (Vol. 50, No. 4)

The new area called graphene plasmonics is an emerging field that addresses the study and application of effects of the light interaction with the surface electron gas in the graphene sheet for the development of new devices. These types of light-matter interactions are called plasmon-polaritons. Specifically, surface polaritons are mixed excitations (where one of the components is the photon) that can propagate near the interface between two dielectric (or semiconductor) media; the associated electric and magnetic fields rapidly decay away from this interface. For this type of system, one of the most important basic questions with a view to device applications is to determine the polaritons’ dispersion relation (or an equivalent energy-momentum diagram), which will be strongly dependent on the surroundings media. In a recent paper, the authors have studied a graphene system where they have a semi-infinite semiconductor photonic crystal with graphene sheets interlayers, whose external medium is typically vacuum (see the figure). They apply their results to doped GaAs and they have found that the graphene sheets play an important role in modifying the surface (and bulk) plasmon-polariton properties, mainly for the frequency region around 1 THz.
M. S. Vasconcelos and M. G. Cottam, Surface and bulk plasmon-polaritons in semiconductor photonic crystals with embedded graphene sheets, J.Phys. D: Appl. Phys. 52, 285104 (2019)
[Abstract]
Graphene transport with a polymer electrolyte gate (Vol. 42, No. 2)

The electronic properties of graphene have received wide recognition, most notably the award of the 2010 physics Nobel Prize. In graphene's two-dimensional hexagonal lattice, the electrons behave as massless chiral Fermions obeying the Dirac equation. The exotic nature of these quasi-particles and their low carrier density is at the heart of several interesting phenomena, including the unconventional quantum Hall effect and Klein tunneling. Raising the density of charge carriers in graphene can have several implications including the possibility for van Hove singularity driven high-Tc superconductivity. From a fundamental point of view, the high carrier densities substantially modify the interactions between quasi-particles in this two-dimensional crystal.
In this report, graphene devices in Hall-bar geometry are gated with a polymer electrolyte to realize carrier densities an order of magnitude higher than achieved by conventional methods. At these densities, the carriers sufficiently screen the long-range interactions. This allows fully appreciating the importance of various neutral defects on the graphene lattice. In contrast to metals, the temperature scale for quantum suppression of acoustic-phonon scattering in graphene is significantly gate-tunable. The phenomenon is readily observed to high temperatures at high carrier densities.
Graphene transport at high carrier densities using a polymer electrolyte gate
A. Pachoud, M. Jaiswal, P. K. Ang, K. P. Loh and B. Özyilmaz, EPL, 92, 27001 (2010)
[Abstract] | [PDF]
Graphene/ferroelectric hybrid devices (Vol. 42, No. 2)

The soaring demands on non-volatile memory for ultra-portable electronic devices have grown NAND flash into a multi-billion dollar business. As a Si-CMOS based technology, NAND flash provides the most aggressive scalability, closely following the-state-of-art semiconductor manufacturing process. NAND flash also takes advantage of its relatively simple floating-gate structure and seamless integration with Si-CMOS logics, leading to significant lower production cost over other competing non-volatile technologies such as FeRAM and MRAM.
Graphene, with its ultra-high mobility and almost unlimited scalability down to atomic scale, is considered now as one of the most promising candidates for replacing Si. Graphene-based non-volatile memory has also been demonstrated very recently. However, a seamless solution for integrating graphene transistors and non-volatile memory remains a challenge.
Here, Zheng et al. demonstrate the wafer-scale patterning and device operations of Cu-CVD graphene-ferroelectric field effect transistors (GFeFETs) on ferroelectric Pb(Zr0.3Ti0.7)O3 (PZT) substrates, integrating both transistor and non-volatile memory functionalities on the same chip.
In the linear regime of PZT, ultra-low-voltage operations of GFeFETs within +/-1V can be used as controlling transistors for addressing and reading/writing of memory unit cells. After polarizing PZT, the hysteretic switching of GFeFETs is ideal for ultra-fast non-volatile data storage. The combination of high-quality Cu-CVD graphene and functional substrates will not only greatly speed up the studies of all graphene-based electronics but also open up a new route in exploring new graphene physics and functionalities.
Wafer-scale graphene/ferroelectric hybrid devices for low-voltage electronics
Yi Zheng, Guang-Xin Ni, Sukang Bae, Chun-Xiao Cong, Orhan Kahya, Chee-Tat Toh, Hye Ri Kim, Danho Im, Ting Yu, Jong Hyun Ahn, Byung Hee Hong and Barbaros Özyilmaz, EPL, 93, 17002 (2011)
[Abstract] | [PDF]
Graphite/CdMnTe Schottky diodes and their electrical characteristics (Vol. 45 No.2)

CdTe is a basic material for X- and γ-ray detectors, which are widely used in various areas. However, the leakage current in these devices at room temperature is too large, which precludes a high energy resolution in the measured spectra. In the 1990s, Cd1-xZnxTe alloy with a wider band gap was proposed as a solution, but hopes pinned on it were not fully fulfilled. The search for new materials for the detectors continues and Cd1-xMnxTe is considered a promising material. The main obstacle hindering the application of Cd1-xMnxTe in the detectors is the lack of Cd1-xMnxTe-based diodes. In this paper we show that Schottky diodes fabricated by the deposition of colloidal graphite have good rectifying properties and low reverse currents. Their I-V curves are described analytically in terms of the generation-recombination theory based on the Shockley-Read-Hall statistics. It is shown that tunneling is responsible for the increase of the leakage currents at higher voltages and ways of its elimination are proposed.
L. A. Kosyachenko, R. Yatskiv, N. S. Yurtsenyuk, O. L. Maslyanchuk and J. Grym, “Graphite/CdMnTe Schottky diodes and their electrical characteristics”, Semicond. Sci. Technol., 29, 015006 (2014)
[Abstract]
Green photon beams more agile than optical tweezers (Vol. 44 No. 6)

A new manipulation tool exploits the fact that when light interacts with matter, it creates a force that produces material properties in macromolecules and biological cells.
Romanian scientists have discovered a novel approach for the optical manipulation of macromolecules. The authors had the idea to use green photon beams. With them, it is possible to perform optical manipulation of macrostructures, such as biological proteins, with greater precision than with optical tweezers.
The authors used high-density green photon beams (HDGP) capable of inducing a polarisation effect within complex macrostructures. They found that the effect of the beam leads to ‘biological optical matter’. This includes newly-organised material structures, such as molecular aggregates and micro-particles, and can feature new characteristics such as antioxidant properties. The authors realised that this approach covers a larger area than focused tweezers and is capable of organising mesoscopic matter into a new 3D molecular architecture.
S. Comorosan, S. Polosan, I. Popescu, I. Stamatin, E. Ionescu, S. Avramescu, L. Cristian Cune and M. Apostol, 'Optical manipulation of complex molecular systems by high density green photons: experimental and theoretical evidence', Eur. Phys. J. B, 86, 232 (2013)
[Abstract]
Hamiltonian walks and applications to protein folding (Vol. 45 No.2)

Hamiltonian walks on lattices are model systems for compact polymers such as proteins. The authors present a new enumeration algorithm that exactly counts the number of Hamiltonian walks on the 4x4x4 cube, which before was out of reach by several orders of magnitude of computing power. In addition, the authors present a new related Monte Carlo algorithm for counting the number of Hamiltonian walks, up to the 7x7x7 cube.
The exact enumeration algorithm proved to be very fast, taking only several hours on a single PC. The number of Hamiltonian walks on the 4x4x4 cube was found to be 27,747,833,510,015,886.
The number of Hamiltonian walks grows faster with system size than previously anticipated. The authors attribute this to severe surface corrections. These effects could only be shown using the new Monte Carlo algorithm, which greatly extended the range of system sizes, compared to previous results.
Finally, the paper discusses the uniqueness of ground states in the HP model for protein folding. It provides a bound on the uniqueness, and gives an intuitive picture for the uniqueness in the thermodynamic limit.
R. D. Schram and H. Schiessel, “Exact enumeration of Hamiltonian walks on the 4 × 4 × 4 cube and applications to protein folding”, J. Phys. A: Math. Theor., 46, 485001 (2013)
[Abstract]
Heat flux anomaly at nanoscale (Vol. 44 No. 1)
Nanomaterials are promising platforms for testing fundamental heat transport theories. The present review article outlines anomalous heat transport in nanometric scale materials from the latest developments in experimental, theoretical and numerical studies of heat conduction. It shows that the standard laws governing conduction at macroscopic scale no longer apply in nanostructures, which has implications in electronic, optoelectronic, and thermal devices.
Nanostructures are low-dimensional materials such as single carbon atom layers of graphene, nanowires or nanotubes. Laws governing heat transport through what are known as phonons, representing the vibrational modes of lattices, are different in such materials compared to the macroscopic scale. This is because the phonon characteristic lengths are comparable to the characteristic lengths of these nanostructures. Particularly, heat carriers diffuse faster than in a random walk but slower than in a straight trajectory motion.
This paper outlines the recent experiments on quasi-one-dimensional nanostructures and two-dimensional graphene that display a thermal conductivity with this anomalous behaviour, linked to heat diffusion’s size dependency. Such studies present a dual challenge in that the technique associated with measuring heat flux in nanosystems is combined with the complexity of accurately controlling object at nanoscale.
Due to these measurement challenges, experimental results need to be complemented by theoretical studies. Hence, this paper also accounts for numerical studies on heat conduction of nanotubes, nanowires and graphene, concentrating particularly on atomic-level simulations.
In addition, the latest theories explaining the mechanisms of such anomalous heat conduction are presented. But these are by no means complete. Further systematic investigations are needed for better thermal energy management and control in nanoscale devices.
S. Liu, X. F. Xu, R. G. Xie, G. Zhang and B. W. Li, ‘Anomalous heat conduction and anomalous diffusion in low dimensional nanoscale systems’, Eur. Phys. J. B, 85, 337 (2012)
[Abstract]
Heat fluxes in an aging ferromagnet (Vol. 44 No. 2)

Equilibrium statistical mechanics provides general expressions for probability distributions from which thermodynamics can be deduced. A long-standing question concerns the possibility of describing by general principles also non-equilibrium fluctuations. Important progress in this direction has been made with the development of fluctuation theorems and macroscopic fluctuation theory for non-equilibrium steady states. However, fluctuations in non-stationary systems remain poorly understood.
Recently, the off-equilibrium probability distribution of the heat exchanged with the thermal bath by a ferromagnet quenched below the critical point (a paradigm of phase separation and, more generally, of non-equilibrium aging systems) has been calculated analytically in an exactly solvable limit. Surprisingly, the distribution shows the existence of a singular threshold (see figure), beyond which fluctuations undergo a condensation transition. Namely, macroscopic amounts of heat are released to the thermal bath through a single microscopic mode.
The mechanism driving this novel dynamical feature is reminiscent of the one underlying the Bose-Einstein condensation. The remarkable difference is that the Bose-Einstein condensation is about average properties, while in this case the condensation transition involves fluctuations remote from typical properties. The occurrence of this phenomenon in an out of equilibrium context still needs to be fully understood.
From the explicit knowledge of the heat distribution a fluctuation relation, connecting the probabilities of released and absorbed heat, has been derived. This is the first analytical expression of this kind found for non-stationary systems. In this relation two characteristic energy scales appear, formally playing the same role of the reservoir temperatures in stationary fluctuation relations. The interpretation of these energy scales in terms of non-equilibrium effective temperatures and its consequences is an open question currently under investigation.
F. Corberi, G. Gonnella, A. Piscitelli and M. Zannetti, ‘Heat fluxes in an aging ferromagnet’, J.Phys.A: Math. Theor. 46, 042001 (2013)
[Abstract]
Helping turn waste heat into electricity (Vol. 47 No. 2)

How the collective motion of electrons interacting with bismuth crystal atoms can be fine-tuned to harvest excess heat
At the atomic level, bismuth displays a number of quirky physical phenomena. A new study reveals a novel mechanism for controlling the energy transfer between electrons and the bismuth crystal lattice. Mastering this effect could, ultimately, help convert waste heat back into electricity, for example to improve the overall efficiency of solar cells. These findings have been published now. The author investigates the collective motion of electrons in bismuth, which behaves in a fluid manner with waves propagating in it, a phenomenon referred to as a low energy plasmon. This study demonstrates that the low energy plasmons, when tuned to the same wavelength as the lattice vibrations of the bismuth crystal, or phonons, can very efficiently slow lattice motion. In essence, this plasmon-phonon coupling mechanism, once intensified under specific conditions, could be a new way of transferring energy between electrons and the underlying crystal lattice.
One implication is that the plasmon-phonon coupling can help to explain a long-since observed, significant effect in bismuth: the so-called Nernst effect. This occurs when a sample is warmed on one side and subjected to a magnetic field, causing it to produce a significant electrical voltage in the perpendicular direction. Hence it turns heat into useful electricity.
P. Chudzinski, Resonant plasmon-phonon coupling and its role in magneto-thermoelectricity in bismuth, Eur. Phys. J. B 88, 344 (2015)
[Abstract]
HIAS 2019 (Vol. 51, No. 3)

In September 2019, the Department of Nuclear Physics of the Australian National University welcomed delegates from around the world to Canberra for the 7th Heavy Ion Accelerator Symposium (HIAS 2019).
The Symposium series takes place at Australia’s Heavy Ion Accelerator Facility and provide a forum to build cross-institutional and interdisciplinary links in research areas exploiting the capabilities of heavy-ion accelerators and their associated state-of-the-art instrumentation.
HIAS 2019 had a particular focus on Nuclear structure and nuclear data, Accelerator Mass Spectrometry Applications, Nuclear Astrophysics, Nuclear Reactions, and New Instrumentation for Nuclear Science and Applications.
A.J. Mitchell, S. Pavetich and D. Koll (Eds.), Heavy Ion Accelerator Symposium (HIAS 2019), Canberra, Australia, September 9-13, 2019, EPJ Web of Conferences 232 (2020)
[Proceedings]
High carrier injection for all-silicon laser
Presently, laser diodes are mainly used to convert electronic signals into optical signals in fast communication systems. They are manufactured with a wide variety of semiconductors different from silicon and the incorporation of these lasers in silicon layers leads to distortion of the signals, degradation of sensitivity, and limits the reliability. Silicon, with more than 95% of the international market share, dominates other semiconductors. A silicon laser source would provide the ideal improvement for future high-speed electronics. The structure of silicon limits its light-emitting efficiency and, despite the very fast development of silicon based electronics, optical applications of silicon devices have not been conducted thoroughly.
The question “which silicon device will be useful for transforming electronic signals into optical signals?” is still relevant today. This paper presents an advance in optoelectronic silicon devices since it introduces and formulates a process for the creation of an optical active layer inside silicon devices. A degradation of the structure is induced by hot carriers injection. The process has been controlled by the analysis of the junction characteristic. The authors suggest that the created defects disturb the lattice periodicity by creating energy states in the band gap of the silicon. The model is based on a population inversion associated with a defect layer for carrier confinement and an electrical stimulation of light is demonstrated. The emitted light is localized is an area close the emitter-base junction. The authors measure the amplification of emitted light, and they showed that defect layer appears as an optical cavity. This groundwork introduces practical ways for improving the optical properties of silicon devices for optoelectronic applications.
High carrier injection for all-silicon laser
H. Toufik, W. Tazibt, N. Toufik, M. El Tahchi, F. Pélanchon and P. Mialhe, Eur. Phys. J. AP 58, 10103 (2012)
[Abstract]
High intensity 6He beam production (Vol. 43 No. 5)

Nuclear structures of short-lived radioisotopes are nowadays investigated in large scale facilities based on in-flight fragmentation or isotope separation online (ISOL) methods. The ISOL technique has been constantly extended at CERN-ISOLDE, where 1.4GeV protons are exploited by physicists to create radioisotopes in thick materials; these exotic nuclei are released and pumped online into an ion source, producing a secondary beam which is further selected in a magnetic mass spectrometer before post-acceleration.
Ten years ago a proposal to inject suitable ISOL beams into the CERN accelerator complex and to store these isotopes in a decay ring with straight sections was proposed for a ”Β-beam facility”; intense sources of pure electron neutrinos - emitted when such isotopes decay - are directed towards massive underground detectors for fundamental studies such as observation of neutrino flavour oscillations and CP violation.
Our paper reports on the experimental production of the anti-neutrino emitter 6He. We use a two-step reaction in which the proton beam interacts with a tungsten neutron spallation source. The emitted neutrons intercept a BeO target to produce 9Be(n,a)6He reactions. The neutron field was simulated by Monte-Carlo codes such as Fluka and experimentally measured. The large predicted 6He production rates were also experimentally verified. Fast 6He diffusion, driven by the selection of a suitable BeO material, could be demonstrated, leading to the highest 6He beam rates ever achieved at ISOLDE. These results provide a firm experimental confirmation that the Β-beam will be able to deliver enough anti-neutrino rates using a neutron spallation source similar to ISIS-RAL (UK). This work is now being completed by the experimental validation of the 18Ne neutrino source design.
T. Stora and 11 co-authors, ‘A high intensity 6He beam for the β-beam neutrino oscillation
Facility’, EPL (2012) 98, 32001
[Abstract]
High-energy ions’ movement affected by silicon crystal periodicity (Vol. 49, No. 3)

Thinnest-ever silicon crystal enhances ion channelling performance in particle accelerators.
The thinner the silicon crystal, the better. Indeed, thinner crystals provide better ways to manipulate the trajectories of very high-energy ions in particle accelerators. Further applications include materials analysis, semiconductor doping and beam transport in large particle accelerators. All of these rely on our understanding of how positively-charged high-energy particles move through crystals. This process, called ion channelling, is the focus of a new paper published recently. In this paper, the authors study how the crystal periodicity affects the motion of ions whose energy belongs to a 1 to 2 MeV range, as they are transmitted through very thin crystals on the order of a few hundred nanometres, and how it impacts their angular distribution. What is so interesting about this work is that it relies on an advanced process of fabricating much thinner crystals than was previously possible, reaching 55 nanometres. This, in turn, makes it possible to observe much more sensitive and fine angular structures in the distribution of transmitted ions.
M. Motapothula and M. B. H. Breese, A study of small impact parameter ion channeling effects in thin crystals, Eur. Phys. J. B 91, 49 (2018)
[Abstract]
High-fidelity single photons (Vol. 44 No. 3)

Many quantum technologies—such as cryptography, quantum computing and quantum networks—hinge on the use of single photons. In the present paper, the authors have identified the extent to which photon detector characteristics shape the preparation of a photon source designed to reliably generate single photons. They determined the value of key source parameters that are necessary to generate high-fidelity single photons.
The problem with photon detectors is that they can be noisy or have a limited ability to detect single photons. Some cannot identify the number of photons; they can only detect their presence. Given the influence of these factors, improving the fidelity of single-photon generation is very challenging.
Single photons are typically generated using two laser beams that are correlated at the quantum level. This means that the detection of a single photon in the first beam heralds the generation of a single photon in the second one.
The authors simulated which photons would be obtained from different initial sources. This led to outline the conditions under which the heralding detector can deliver good resolution of the number of photons, as a means of improving the reliability in obtaining single photons. Using two experimental detectors checked these findings.
V. D'Auria, O. Morin, C. Fabre and J. Laurat, ‘Effect of the heralding detector properties on the conditional generation of single-photon states’, Eur. Phys. J. D 66, 249 (2012)
[Abstract]
High-resolution measurement of two-proton stripping (Vol. 46 No. 1)

To date, the two-nucleon pick-up and stripping counterparts of the (p,t) and (t,p) reactions, the (3He,n) and (n,3He) reactions, have been poorly investigated due to the difficulty in performing high-resolution measurements of fast-neutron energies. This experimental limitation has hindered a full understanding of the role of proton pairing in nuclei.
In the present work, this experimental constraint is addressed by detecting the γ-ray decay of populated excited states in an array of escape-suppressed HPGe detectors in coincidence with neutron detectors placed near θlab = 0°. High selectivity is obtained and a rejection factor of the order of 1 in 103 of unwanted reaction channels is demonstrated. The population strength of excited states is deduced with an energy resolution better than 3 keV. This allows the proton occupancy of excited states to be measured.
We use the 59Co(3He,n)61Cu reaction at Elab = 22.5 MeV to populate 2p-1h proton states across the Z = 28 closed shell. Discrepancies with large-basis shell-model calculations suggest that proton occupancies of the f7/2 shell are not currently well reproduced.
P. Papka et al., “High-resolution two-proton stripping to 2p-1h 7/2- states via the 59Co(3He,nγ)61Cu reaction”, Eur. Phys. J. A 50, 158 (2014)
[Abstract]
Subcategories
- Highlights
- Vol. 41 No. 6 - Highlights
- Vol. 42 No. 3 - Highlights
- Vol. 41 No. 5 - Highlights
- Vol. 42 No. 1 - Highlights
- Vol. 42 No. 2 - Highlights
- Vol. 42 No. 4 - Highlights
- Vol. 42 No. 5 - Highlights
- Vol. 43 No.2 - Highlights
- Vol. 42 No. 6 - Highlights
- Vol. 43 No.1 - Highlights
- Vol. 43 No.3 - Highlights
- Vol. 43 No.4 - Highlights
- Vol. 43 No.5 - Highlights
- Vol. 43 No.6 - Highlights
- Vol. 44 No.1 - Highlights
- Vol. 44 No.2 - Highlights
- Vol. 44 No.3 - Highlights
- Vol. 44 No.4 - Highlights
- Vol. 44 No.5 - Highlights
- Vol. 45 No.1 - Highlights
- Vol. 45 No.2 - Highlights
- Vol. 45 No.3 - Highlights
- Vol. 45 No.4 - Highlights
- Vol. 45 No.5-6 - Highlights
- Vol. 46 No.1 - Highlights
- Vol. 46 No.2 - Highlights
- Vol. 46 No.3 - Highlights
- Vol. 46 No.4 - Highlights
- Vol. 46 No.5-6 - Highlights
- Vol. 47 No.1 - Highlights
- Vol. 47 No.2 - Highlights
- Vol. 47 No.3 - Highlights
- Vol. 47 No.5-6 - Highlights
- Vol. 48 No. 1 - Highlights
- Vol. 48 No. 2 - Highlights
- Vol. 48 No. 3 - Highlights
- Vol. 48 No.4 - Highlights
- Vol. 48 No.5-6 - Highlights
- Vol. 49 No.1 - Highlights
- Vol. 49 No.2 - Highlights
- Vol. 49 No.3 - Highlights
- Vol. 49 No. 4 - Highlights
- Vol. 49 No. 5-6 - Highlights
- Vol. 50 No. 1 - Highlights
- Vol. 50 No. 2 - Highlights
- Vol. 50 No. 3 - Highlights
- Vol. 50 No. 4 - Highlights
- Vol. 50 No. 5-6 - Highlights
- Vol. 51 No. 1 - Highlights
- Vol. 51 No. 2 - Highlights
- Vol. 51 No. 3 - Highlights
- Vol. 51 No. 4 - Highlights
- Vol. 51 No. 5 - Highlights
- Vol. 52 No. 1 - Highlights