Accueil

HIAS 2019 (Vol. 51, No. 3)

HIAS 2019 group photo

In September 2019, the Department of Nuclear Physics of the Australian National University welcomed delegates from around the world to Canberra for the 7th Heavy Ion Accelerator Symposium (HIAS 2019).

The Symposium series takes place at Australia’s Heavy Ion Accelerator Facility and provide a forum to build cross-institutional and interdisciplinary links in research areas exploiting the capabilities of heavy-ion accelerators and their associated state-of-the-art instrumentation.

HIAS 2019 had a particular focus on Nuclear structure and nuclear data, Accelerator Mass Spectrometry Applications, Nuclear Astrophysics, Nuclear Reactions, and New Instrumentation for Nuclear Science and Applications.

A.J. Mitchell, S. Pavetich and D. Koll (Eds.), Heavy Ion Accelerator Symposium (HIAS 2019), Canberra, Australia, September 9-13, 2019, EPJ Web of Conferences 232 (2020)
[Proceedings]

Models explain changes in cooking meat (Vol. 51, No. 3)

Moisture flows in cooking meat. Temperature at 10 min. (blue), 30 min. (red) and 50 min. (yellow).

By treating meat as a network of flexible polymers surrounded by flowing moisture, computer models can accurately predict how much it will shrink when cooked.

Made up of complex networks of moisture-saturated proteins, meat displays some intriguing physical properties when it is cooked. In this work, mathematicians show that by modelling meat as a fluid-saturated matrix of elastic proteins, which are deformed as the fluid moves, cooking behaviours can be simulated precisely.

S Deyo, S Granzier-Nakajima, H Nelson, P Puente, K Tully, J Webb, A mathematical model for meat cooking, Eur. Phys. J. Plus 135, 322 (2020)
[Abstract]

Distortion isn’t a drag on fluid-straddling particles (Vol. 51, No. 3)

Straddling particles deform fluid interfaces

The drag forces experienced by particles which straddle and distort the interfaces between un-mixable fluids are less influenced by the shape of the distortion than previously thought.

Some intriguing physics can be found at the interfaces between fluids, particularly if they are straddled by particles like proteins or dust grains. When placed between un-mixable fluids such as oil and water, a variety of processes, including inter-molecular interactions, will cause the particles to move around. These motions are characterised by the drag force experienced by the particles, which is itself thought to depend on the extent to which they distort fluid interfaces. In this work it is shown that the drag force experienced by fluid-straddling particles is less affected by interface distortion than previously believed.

J-C Loudet, M. Qiu, J Hemauer, J J Feng, Drag force on a particle straddling a fluid interface: influence of interfacial deformations, Eur. Phys. J. E 43, 13 (2020)
[Abstract]

Frozen-planet states in exotic helium atoms (Vol. 51, No. 3)

Low energy anti-proton accelerator. © Wikipedia, Tom Purves from Toronto, Canada

Mapping the energy levels and estimated the stability of a ‘frozen planet’ configuration of anti-protonic helium.

Exotic subatomic particles that are like ‘normal’ particles apart from one, opposite, property - such as the positron, which is like an electron but positively rather than negatively charged - are collectively known as antimatter. Direct studies of collisions between particles of matter and those of antimatter using giant facilities such as those at CERN can advance our understanding of the nature of matter. In this work, the energy levels of an exotic form of helium produced in this way are mapped. The work has been described by one commentator as ‘... a new jewel in the treasure of scientific achievements in atomic physics theory”.

T.P. Grozdanov, E.A. Solov'ev , Hidden-crossing explanation of frozen-planet resonances in antiprotonic helium; their positions and widths, Eur. Phys. J. D 74, 50 (2020)
[Abstract]