The origin of the Earth’s magnetic field: fundamental or environmental research?

Emmanuel Dormy, (CNRS/ENS/IPGP)
MHD in Astro- and Geophysics, Département de Physique, LRA, Ecole Normale Supérieure • France

The origin of the Earth’s magnetic field is a long-standing issue, which has captured the attention of many renowned scientists. If William Gilbert, André-Marie Ampère, René Descartes, Edmond Halley, Karl-Friedrich Gauss, Lord Blackett, and many others who contributed to the development of science, have worked on this problem, it is mainly because it was related to a very practical issue of critical importance: navigation at sea. This is not so true anymore, now that satellites provide the precise latitude and longitude without the need for us to rely on the Earth’s internal magnetism. Yet the question of the origin of the Earth’s magnetic field is so natural that it is still the object of very competitive research. Nobody can ignore that the compass needle points toward the north, and it is a bit irritating that we still cannot offer a complete physical understanding of why it is so. The problem has therefore become an active field of fundamental research in which significant progress has been made in the last few years using combined theoretical, experimental and numerical approaches. By its very nature, the problem is interdisciplinary and lies at the interface of physics, geophysics and applied mathematics. This problem has recently received considerable attention in the press because of the concern of a possible reversal of polarity of the Earth’s magnetic field in the near future. Considering that we risk seeing our planet unshielded from the solar wind, the field generation mechanism again appears to be a societal concern and a legitimate goal of environmental research.

I will summarise here the basics of our present understanding of the generation of the Earth’s magnetic field and then ponder on the scientific clues supporting the possibility of an approaching or imminent polarity reversal.

The origin of the Earth’s magnetic field

When the Earth formed some 4.5 billion years ago, heavy elements concentrated at the centre, as a result 3000 km below our feet lies the largest of our planet’s oceans: the core of liquid iron (mixed with traces of lighter elements), a sphere of 3400 km in radius. As the pressure increases towards the heart of the Earth, the iron solidifies and we find a solid inner-core, which occupies a volume of 1200 km in radius. It is in this metallic core that the magnetic field of the Earth originates. Temperatures at such a depth are above 3000°K and thus well above the Curie point (at which metals lose their ferromagnetic properties). A magnetic field can therefore only be sustained if electrical currents circulate in this ocean of liquid iron. However, Ohmic dissipation would suppress any unsustained electrical current in the Earth’s core within some 20 kyr, yet there has been a magnetic field on Earth for millions of years. This is attested by the study of the ancient field recorded in sediments and lavas (known as paleomagnetic records). This means that there must be a process that regenerates electrical currents in the Earth’s core against Ohmic dissipation.

The study of paleomagnetic records of the Earth’s magnetic field also revealed a most puzzling feature: the Earth’s magnetic field has reversed its polarity several times during its history in an apparently chaotic manner. The self-excited dynamo mechanism was first proposed by Sir Joseph Larmor in 1919 to account for the magnetic field of sunspots. This theory, called the dynamo theory for short, proposes that the non-magnetic solution ($B = 0$) in a magnetohydrodynamic flow can become unstable if the flow is vigorous enough. This sort of instability can easily be introduced using a simple mechanical disk device (see the box), it is not as straightforward when it concerns a uniform volume of conducting fluid. A major cause of concern was first identified by Thomas Cowling, as early as 1934. Cowling found that an axially symmetric field cannot be maintained by dynamo action. This result suppresses the hope for any simple axially symmetric description of the dynamo process (a tempting approach considering the strong symmetry of the Earth field). In fact an even more general result came afterwards, and is known as Zeldovich’s theorem: no two-dimensional solution can be sought. The problem has to be envisaged directly in three-dimensions of space, without the hope of a first simplified spatial approach.

The problem was formalised just after World War II by Walter Elsasser. Despite the early bad news of Cowling’s theorem, it is the only theory that can account for the observational constraints. Besides, a remarkably nice feature of the resulting equations is their invariance under a change of sign of B. If a velocity field of space and time $u(x,t)$, a temperature field $T(x,t)$, and a magnetic

![Fig. 1: The strong decrease of the magnetic dipole moment over the last four centuries as revealed by the GUFM and the IGRF field models.](http://www.europhysicsnews.org)
The self-excited dynamo: a magnetic instability

Dynamo action (the conversion from kinetic to magnetic energy) works so efficiently in a bicycle dynamo that it is not straightforward at first to capture what makes the subject so difficult and interesting! The first critical issue is that an everyday dynamo relies on a permanent magnet. Usually the magnet rotates within a loop and the varying flux will induce an alternating electrical current in the coil. This principle can be slightly modified to produce a continuous current, a process known as the Faraday Disk Dynamo (introduced by Faraday in 1831). If a conducting disk revolves while being permeated by an applied magnetic field (as depicted in fig. a), a potential difference will be induced between the axis and the rim of the disk, thus driving an electrical current if these are connected by a wire. The magnetic flux through the disk and the electromotive force (obtained by integrating \(u \times B \) across the disk of radius \(r \), assuming a uniform normal field \(B \)) are

\[
\Phi = B \pi r^2 \quad \text{and} \quad E = \frac{\Omega B r^2}{2} - \frac{\Phi \Omega}{2\pi}
\]

This setup is however not a self-excited dynamo, since it relies on a permanent magnet. If one now replaces this magnet with a solenoid of inductance \(L \) (as in fig. b), one now faces an instability problem. If the rotation rate is small enough, the resistivity will damp any initial magnetic perturbation. If the rotation rate is sufficient, then the system undergoes a bifurcation and an initial perturbation of the field will be exponentially amplified by self-excited dynamo action. Introducing \(M \), the mutual inductance between the solenoid and the disk, we can use

\[
\Phi = M I \quad \text{to rewrite} \quad E = \frac{M \Omega I}{2\pi}
\]

Then, \(R \) being the electrical resistivity of the complete circuit, electrical currents are given by

\[
L \frac{dI}{dt} + RI = \frac{M \Omega I}{2\pi}
\]

It follows that the system becomes unstable and an electrical current grows in the circuit provided

\[
\Omega > \Omega_c = \frac{2\pi R}{M}
\]
The approaching polarity reversal

While this field of research has made significant progress over the last few years, it has also received considerable attention in the press because of the concern of an approaching polarity reversal. Indeed, it has even been proposed that we are currently at the very beginning of such a geomagnetic reversal. Since these concerns are guided by observational facts, we will briefly review them here.

The dipole moment decay

The usual way to measure the strength and orientation of the dipolar component of the geomagnetic field is to use the dipole moment. It is defined using the first terms of the spherical harmonic expansion. It is a convenient notion, because it can also be recovered in the past using paleomagnetic records (neglecting the averaged effect of higher moment).

Rather than using brute magnetic observatory data, we rely here on smoothed models based on these measurements. These are the geomagnetic field model GUFM (Jackson et al., 2000) over 1600-1990 or the International Geomagnetic Reference Field — IGRF (Manda and MacMillan, 2000) going back to 1900. These models differ only slightly and we will use both to highlight the robust features. Both of these clearly reveal (see Figure 1) the rapid and relatively steady decrease of the geomagnetic dipole moment over the last four centuries. This constitutes the original and primary motive for pondering the possibility of an approaching reversal.

As striking as it may be, this decrease is not necessarily meaningful, especially if the present magnitude of the dipole moment is not small compared to that of the past. Indeed paleomagnetism reveals that the geomagnetic field amplitude is a fluctuating quantity and the present decrease could just be part of such fluctuations. In fact it turns out that, the present dipole moment is still significantly higher than its averaged value both over the last polarity interval (800 Ka) and the three preceding ones (0.8-1.2 Ma), see Table 1 (Valet et al., 2005).

Another interesting property of the Earth’s dipole moment is its horizontal field strength (see Figure 3) it can be shown that the north magnetic dip pole is simply an ill defined quantity, and a minute change in the field can yield a huge shift in the zero position (i.e. in the dipole position), whereas the south magnetic dip pole is a well constrained quantity (Mioara and Dormy, 2003).

Magnetic flux patches

Another possible sign of an approaching reversal is the evolution of the magnetic field structure at the boundary between the core (where dynamo action takes place) and the mantle (largely insulating). Thanks to the insulating nature of the mantle (the first 300 km below our feet), spherical harmonic models can be continued downward to this depth. The field there is much more complicated than at the surface of the Earth, as the downward continuation reveals finer scale structures. Among these structures, while the globally dipolar nature of the field is still clearly present and the magnetic flux globally reverses its sign at the equator, some patches of reversed flux are present in both hemispheres. It happens that while there were 2 such patches in the northern hemisphere in 1980, this number has increased to 6 in 2000 (meanwhile a merger of two patches has brought their number down from 4 to 3, including a larger one, in the southern hemisphere). Of course, if these patches became so large and numerous that they began to cover the core surface, the polarity would be reversed! In fact it turns out that this is the way some of the numerical dynamo models reversals occur. At the moment, these patches extend over some 15% of the Earth core surface. Besides, we shall, of course, note that this increase in the number of reversed patches is the
direct signature in the physical space of the decrease of the dipole moment reported before in the spectral domain.

The overdue reversal

Finally one last element could point toward the possibility of an approaching reversal: the last reversal dates back some 800,000 years ago, while seven reversals have occurred during the last 2 million years, so that... we could be overdue! The reversal rate of the Earth's magnetic field is however far from constant. The long-term average (over hundreds of Myr) is of 1 reversal per million years (the maximum value, when averaged over a few million years, is of some 6 reversals per million years). Some polarity intervals, known as superchrons, even lasted for tens of millions of years! This argument is therefore not very convincing.

Perspectives

A striking property of dynamo action seems to be its ability to work on a large variety of natural bodies. Most planets in the solar system (Venus and Mars excepted) exhibit a magnetic field, but the dynamo instability also occurs on even larger scales. The Sun (100 times the Earth in radius) exhibits a magnetic field, which reverses with a relatively regular period of 22 years. On an even larger kiloparsec (3x10^{19} m) length-scale: galaxies exhibit their own large-scale magnetic field, and there again the only well accepted explanation is self-excited dynamo action. To highlight this amazing range of scales, we should just stress that in the units relevant to the galaxy, the Earth would be a nano-object! Yet a similar process is at work in all these objects (of course, under different parameter regimes).

In conclusion, while dynamo action and the origin of the magnetic fields of planets, stars, and galaxies constitutes an exciting scientific challenge; evidence for an imminent reversal remains rather weak. Moreover, the typical timescale for a reversal is expected to be of the order of 1000 years, so that it should not constitute a major source of urgent social concern. Does that mean that such research, exciting as it may be, should not be supported? Clearly it should. Researchers trying to understand the origin of the geomagnetic field do so for the sake of physical understanding, and for the improvement of our general knowledge; not because they fear an imminent reversal. More and more programmes (both national and international) are emerging to strengthen applied research, directly aimed at environmental concerns. It might be tempting for some fields of research to put forward hypothetical environmental issues and thereby enter the wealthier fields of research that directly address lay concerns, but is this a smart thing to do in the long term? Might it be more valuable to defend the idea that fundamental research is important? Even if—borrowing the words of Jacobi—its only objective is “l’honneur de l’esprit humain” (the honour of the human spirit).

Table 1: Dipole moment as provided by the International Geomagnetic Reference Field in 2005 and 2000 and the averaged value during the last 800 kyr and the 0.8-1.2 Ma interval. The present dipole moment is significantly stronger than the average over both periods.

<table>
<thead>
<tr>
<th>Date/Period</th>
<th>Dipole moment</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>In 2005</td>
<td>7.776 x 10^{22} A m^2</td>
<td>IGRF</td>
</tr>
<tr>
<td>In 2000</td>
<td>7.779 x 10^{22} A m^2</td>
<td>IGRF</td>
</tr>
<tr>
<td>Over the last 800 Ka</td>
<td>7.5±1.7 x 10^{22} A m^2</td>
<td>Valet et al, 2005</td>
</tr>
<tr>
<td>Over 0.8-1.2 Ma</td>
<td>5.3±1.5 x 10^{22} A m^2</td>
<td>Valet et al, 2005</td>
</tr>
</tbody>
</table>

References

Fig. 3: The Earth’s dip poles represented by a red dot for epoch 1960, 1980, 2000. The rapid displacement of the north magnetic dipole is clearly visible. Isovalues of the magnitude of the horizontal component of the field are also represented with increasing darkness of blue for increasing intensity (Mandea and Dormy, 2003).