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During the last few decades of the 20th century the scientific
community has recognized that in many situations (and

against everyday intuition) noise or fluctuations can trigger new
phenomena or new forms of order, like in noise induced phase
transitions, noise induced transport [1], stochastic resonance [2],
noise sustained patterns, to name just a few examples. However, in
almost all the studies of such noise induced phenomena it was
assumed that the noise source had a Gaussian distribution, either
white (memoryless) or colored (that is, with “memory”). This was
mainly due to the difficulties in handling non Gaussian noises and
to the possibility of obtaining some analytical results when working
with Gaussian noises. In addition to the intrinsic interest in the
study of non Gaussian noises, there has been some experimental
evidence, particularly in sensory and biological systems, indicating
that at least in some cases the noise source could be non Gaussian.

This article is a brief review on recent studies about some of
those noise induced phenomena when submitted to a colored (or
time correlated) and non Gaussian noise source. The source of
noise used in those works was one generated by a q-distribution
arising within a nonextensive statistical physics framework [3]. In
all the systems and phenomena analyzed, it was found that the
system’s response was strongly affected by a departure of the noise
source from the Gaussian behavior, showing a shift of transition
lines, an enhancement and/or marked broadening of the systems
response. That is, in most of the cases, the value of the parameter
q optimizing the system’s response resulted q ≠ 1 (with q = 1
corresponding to a Gaussian distribution). Clearly, this result
would be highly relevant for many technological applications, as
well as for some situations of biological interest.

Non gaussian noise
In order to introduce the form of the non Gaussian noise to be
used, we start considering the following form of a Langevin or
stochastic differential equation (that is, a differential equation
with random coefficients), with additive noise 

(1)x
.
= f (x, t) + η(t),

where η(t) is the stochastic or noise source. Usually, it is assumed that
such noise source corresponds to a Gaussian distributed variable,
having a correlation C(t - t’) = <η(t)η(t’)>. If the noise is “white” (a
particular form of Markovian or memoryless process), we have
C(t - t’) ~ δ(t - t’), while for a typical Ornstein-Uhlenbeck process,
we have C(t - t’) ~ exp[-(t - t’)/τ], with τ the “correlation time”.

However, motivated by previous work based on a nonexten-
sive thermostatistics distribution [3], it was assumed that the
noise η(t) was a non Gaussian and non Markovian process (that
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m Fig. 3: Histogram of normalized angles at different times
of the HMF dynamics. Parameters and initial conditions are
the same used in previous figures. Notice that at long times,
the histogram is of the q-Gaussian form. Inset: squared
deviation as a function of time. It follows the law σ 2 ~ t γ, with
γ > 1, signaling superdiffusion.
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is with “memory”). It was shown that such non Gaussian and non
Markovian noise could be generated through the following
Langevin equation

(2)η. = - 
1
–τ

d
—
dη Vq(η) + 

1
–τ ξ(t);

where ξ(t) is a standard Gaussian white noise of zero mean and
correlation <ξ(t)ξ(t ’)> = Dδ(t-t ’), while the potential 

Vq(η) =     
D

—τ (q-1)
ln[1 + 

τ
–
D

(q-1) 
η2

—
2

].

As this article is not the appropriate place to refer to all the
properties of the process η, we make reference to [4] for details.
However, it is instructive to show the stationary probability distri-
bution function, which is given by 

(3)Pst
q (η) =  

1
—
Zq

expq [ -  
τ
—
D

η 2

—
2 ]

where expq(x) was defined in Box 1 (see the introduction by
C.Tsallis and J.P.Boon in this same issue), Zq being the normal-
ization constant. This distribution can be normalized only for q
< 3, its first moment is <η> = 0, while the second moment,

<η2> = ∫η2 Pst
q (η)dη =     

2D
—τ(5-3q)

≡ Dq,

is finite only for q < 5/3. Also, τq, the correlation time of the
process η, diverges near q = 5/3 and can be approximated over
the whole range of values of q by τq ≈ 2τ /(5 - 3q). When q → 1 the
limit of η being a Gaussian, Ornstein-Uhlenbeck colored noise, is
recovered, with noise intensity D and correlation time τ .
Furthermore, for q < 1, the probability distribution function has a

cut-off and it is only defined for |η| <√
—

2D—τ(1-q)
. In order to visu-

alize the form of the probability distribution as function of η, in
Fig. 1 it is shown for different values of q.

The process η was analyzed in [4], and an effective Markovian
approximation was obtained via a path integral procedure. Such
an approximation allows different (quasi) analytical results to be
obtained. Those results and their dependence on the different
parameters in the case of a double well potential, were compared
with extensive numerical simulations with excellent agreement.

We will now briefly review some of the results obtained when
studying a few of the noise induced phenomena indicate above.

Stochastic resonance
The phenomenon of stochastic resonance shows the counterintu-
itive role played by noise in nonlinear systems as it enhances the
response of a system subject to a weak external signal [2]. It was first
introduced by Benzi and coworkers to explain the periodicity of
Earth’s ice ages (see [2] and references therein). The study of
stochastic resonance has attracted considerable interest due to its
potential technological applications for optimizing the response in
nonlinear dynamical systems, as well as to its connection with some
biological mechanisms. A large number of the studies on stochas-
tic resonance have been done analyzing a paradigmatic bistable
one-dimensional double-well potential. In almost all descriptions
the transition rates between the two wells were estimated as the
inverse of the Kramers’ time (or the typical mean passage time
between the wells), which was evaluated using standard techniques.
In almost all cases, noises were assumed to be Gaussian.

Consider the problem described by Eqs. (1) and (2), where

, the external signal is 

S(t) ~ A cos(ωt) and U0(x) is a double well potential. This prob-
lem corresponds (for A = 0) to the case of diffusion inside the
potential U0(x), induced by the colored non Gaussian noise η.
We will not describe here the details of the effective Markovian
Fokker-Planck equation (see [4, 5]); but it is worth indicating that
such an approximation allowed us to obtain the probability
distribution function of the process η, and to derive expressions
for the Kramers time. Another useful approximation, the so-called
two-state approach [2], was also exploited in order to obtain ana-
lytical expressions for the power spectral density and the
signal-to-noise ratio.

Figure 2 shows some of the main results. In the upper part is
depicted the theoretical results: on the left hand part for R – the
signal-to-noise ratio – versus D, for a fixed value of the time
correlation τ and various q. It is apparent that the general trend is
that the maximum of the signal-to-noise curve increases when the
system departs from the Gaussian behavior (q < 1). The right
hand part again shows R vs D, but for a fixed value of q and
several values of τ . The general trend agrees with previous results
for colored Gaussian noises [2]: an increase of the correlation time
induces the maximum of the signal-to-noise ratio decrease as well
to shift towards larger values of the noise’s intensity. The latter fact
is a consequence of the suppression of the switching rate for
increasing τ . Both qualitative trends were confirmed by Monte
Carlo simulations of Eqs. (1) and (2). The lower part of Fig. 2
show the simulation results. The left hand side corresponds to
the same situation and parameters indicated in the upper left part.
In addition to the increase of the maximum of the signal-to-
noise ratio curve for values of q < 1, it is also seen to be an aspect
that is not well reproduced or predicted by the effective Markov-
ian approximation: the maximum of the signal-to-noise ratio
curve flattens for lower values of q, indicating that the system,
when departing from the Gaussian behavior, does not require a
fine tuning of the noise intensity in order to maximize its response
to a weak external signal. On the right hand side, simulation
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m Fig. 1: The stationary probability distribution function for
the non Gaussian distribution given by Eq. (3), for the value
τ/D = 1.The solid line indicates the Gaussian case (q = 1); the
dashed line corresponds to a bounded distribution (q = 0.5);
while the dashed-dotted line corresponds to a wide
distribution (q = 2).
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results for the same situation and parameters indicated in the
upper right part are also shown.

The numerical and theoretical results can be summarized as
follows: (a) for a fixed value of τ , the maximum value of the
signal-to-noise ratio increases with decreasing q; (b) for a given
value of q, the optimal noise intensity (that one maximizing the
signal-to-noise ratio) decreases with q and its value is approxi-
mately independent of τ ; (c) for a fixed value of the noise
intensity, the optimal value of q is independent of τ and in gener-
al it turns out that qop ≠ 1.

Using a simple experimental setup, in [6] the stochastic reso-
nance phenomenon was analyzed but using a non Gaussian
noise source built up to exploit the form of noise introduced
above, for the particular case of non Gaussian white noise. Those
results confirmed most of the predictions indicated above.

Brownian motors
Brownian motors or “ratchets” – where the breaking of spatial
and/or temporal symmetry, induces directional transport in
systems out of equilibrium – is another noise induced phenome-
non that attracts the attention of an increasing number of
researchers due to both its potential technological applications
and its biological interest [1]. The transport properties of a typi-
cal Brownian motor are usually studied analyzing the following
general stochastic differential or Langevin equation 

(4)m
d 2x
—
dt 2

= -γ dx
—
dt

-V ’(x) - F + ξ(t) + η(t),

where m is the mass of the particle, γ the friction constant, V(x)
the (sawtooth-like) ratchet potential, F is a constant “load” force,
and ξ(t) the thermal noise satisfying <ξ(t)ξ(t’)> = 2γTδ(t - t’). Final-
ly, η(t) is the time correlated forcing (with zero mean) that keeps
the system out of thermal equilibrium allowing the motion to be
rectified. For this type of ratchet model several different kinds of
time correlated forcing have been considered in the literature [1].

The effect of the class of the non Gaussian noise introduced
before on the transport properties of a typical Brownian motor,
was analyzed in [7], with the dynamics of η(t) described by the
Langevin equation (2). As discussed before, for 1 < q < 3, the prob-
ability distribution decays as a power law, that is slower than a
Gaussian. Hence, keeping D (the noise intensity) constant, the width
or dispersion of the distribution increases with q, meaning that, the
higher q, the stronger the “kicks” that the particle will receive when
compared with the Gaussian Ornstein-Uhlenbeck process.

By setting m = 0 and γ = 1, the overdamped regime was initial-
ly analyzed. The main objective of the studies was to analyze the

dependence of the mean current ( J = <dx—
dt >) and the efficiency (ε)

on the different parameters, in particular, their dependence on q.
For the efficiency, defined as the ratio of the work (per unit time)
done by the particle “against” the load force F to the mean power
injected into the system through the external forcing η, a closed
expression using an adiabatic approximation was obtained [7].

Figure 3, on the left hand side, shows typical analytical results -
obtained through the adiabatic Approximation - for J and ε as
functions of q, together with results of numerical simulations.
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m Fig. 2: Signal-to-noise ratio (R) vs the noise intensity (D) for the double-well potential U0(x) =  x
4

—
4

– x 2

—
2

.Theoretical results are

shown in the upper part: on the left hand side for a correlation time τ = 0.1 and different values of the parameter q (that indicates  
a departure from the Gaussian –q = 1– behavior): (from top to bottom) q = 0.25, 0.75, 1.0, 1.25, while on the right hand side for
q = 0.75 and different values of the correlation time: (from top to bottom) τ = 0.25, 0.75, 1.5. Lower part, Monte Carlo simulation
results: left side for τ = 0.1 and (from top to bottom) q = 0.25, 0.75, 1.0, 1.25; while on the right side for q = 0.75 and (from top to
bottom) τ = 0.25, 0.75, 1.5.



A region of parameters similar to the ones used in previous
studies was chosen, but considering a non-zero load force, leading
to a non-vanishing efficiency. As can be seen, although there is not
quantitative agreement between theory and simulations, the used
adiabatic approximation predicts qualitatively very well the
behaviour of J (and ε) as q is varied. As shown in the figure, the
current grows monotonously with q (at least for q < 5/3) while
there is an optimal value of q (> 1) giving the maximum efficien-
cy. This fact could be interpreted as follows: when q is increased,
the width of the Pq(η) distribution grows and high values of the
non Gaussian noise become more frequent, leading to an
improvement of J. Although the mean value of J increases monot-
onously with q, the width of Pq(η) also grows, leading to an
enhancement of the fluctuations around this mean value. This is
the origin of the efficiency’s decay occurring for high values of q:
in this region, in spite of having a large (positive) mean value of
the current for a given realization of the process, the transport of
the particle towards the desired direction is far from being
assured. Hence, the results indicated clearly show that the trans-
port mechanism becomes more efficient when the stochastic
forcing has a non Gaussian distribution with q > 1.

Regarding the situation when inertia effects are relevant (that is
m ≠ 0), taking into account the results discussed above it is rea-
sonable to expect that non Gaussian noises might improve the
capability of mass separation in ratchets. Previous work has
analyzed ratchets with an Ornstein-Uhlenbeck noise as external
forcing (it is worth emphasising that it corresponds to q = 1 in the
present case), and has studied the dynamics for different values of
the correlation time of the forcing, finding that there was a region
of parameters where mass separation occurs. This means that the
direction of the current is found to be mass–dependent: the
“heavy” species moves in one direction while the “light” one does
so in the opposite sense. We have analyzed the same system, but
considering the case of non Gaussian forcing, and focusing on the
region of parameters where (for q = 1) separation of masses was
found. The main result was that the separation of masses indeed

occurs, that happens in the absence of a load force, and that it is
enhanced when a non–Gaussian noise with q > 1 is considered. On
the right hand side of Fig. 3, part (a) the current J as function of q
for m1 = 0.5 and m2 = 1.5 is shown. It is apparent that there is an
optimum value of q that maximizes the difference of currents. This
value, which is close to q = 1.25, is indicated with a vertical double
arrow. Another double arrow indicates the separation of masses
occurring for q = 1 (Gaussian Ornstein-Uhlenbeck forcing). It
was observed that, when the value of the load force is varied, the
difference between the curves remain approximately constant but
both are shifted together to positive or negative values (depending
on the sign of the variation of the loading). By controlling this
parameter it is possible to achieve the situation shown in part (b),
where, for the value of q at which the difference of currents is
maximal, the heavy “species” remains static on average (has J = 0),
while the light one has J > 0. In part (c) for the optimal q, the two
species move in opposite directions with equal absolute velocity.

Resonant gated trapping 
As indicated before, stochastic resonance has been found to play a
relevant role in several biology problems. In particular, there are
experiments on the measurement of the current through voltage-
sensitive ion channels in cell membranes. These channels switch
(randomly) between open and closed states, thus controlling the
ion current. This and other related phenomena have stimulated
several theoretical studies of the problem of ionic transport
through biological cell membranes, using different approaches, as
well as different ways of characterizing stochastic resonance in such
systems. A toy model, sketching the behavior of an ion channel, was
studied in [8]. Among other factors, the ion transport depends on
the membrane electric potential (which plays the role of the barri-
er height) and can be stimulated by both dc and ac external fields.
This included the simultaneous action of a deterministic and a
stochastic external field on the trapping rate of a gated imperfect
trap. The main result was that even such a simple (toy) model of a
gated trapping process shows a stochastic resonance-like behavior.

europhysics news NOVEMBER/DECEMBER 2005200

FEATURES

m Fig. 3: Left hand side: Current (a) and efficiency (b) for the Brownian motor described by Eq. (4), subject to the non Gaussian noise,
both as functions of q.The solid line corresponds to an adiabatic approximation while the line with squares shows results from
simulations. All calculations are for m = 0, γ = 1, T = 0.5, F = 0.1, D = 1 and τ = 100/(2π). On the right hand side: Separation of masses,
results from Monte Carlo simulations for the current as a function of q for particles of masses m = 0.5 (hollow circles) and m = 1.5
(solid squares). Calculations are for three different values of the load force: F = 0.025 (a), F = 0.02 (b) and F = 0.03 (c).The values of the
parameters were fixed at γ = 2, T = 0.1, τ = 0.75, and D = 0.1875.
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The study was based on the so called stochastic model for reac-
tions, generalized in order to include the internal trap’s dynamics.
The dynamical process consists in the opening or closing of the
traps according to an external field that has two contributions, one
periodic with a small amplitude, and another stochastic whose
intensity is (as usual) the tuning parameter. The absorption
contribution is modeled as ~ -γ(t)δ(x)ρ(x, t); with ρ the density
of the not yet trapped particles, and γ(t) = γ∗θ[B sin(ωt) + η - ηc],
where θ(x) – the Heaviside function – determines when the trap
is open or closed: if the signal is B sin(ωt) + η ≥ ηc the trap
opens, otherwise it is closed. The interesting case is when ηc > B,
that is: without noise the trap is always closed. When the trap is
open the particles are trapped with a probability per unit time γ∗

(i.e. the open trap is “imperfect”). Finally, the colored non Gauss-
ian noise given by Eq. (2) was used for η.

The stochastic resonance-like phenomenon was quantified by
computing the amplitude of the oscillating part of the absorption
current, indicated by ∆J(t). The resulting qualitative behavior was
as follows: for small noise intensities the trapping current was low
(as ηc > B), hence ∆J was small too, while for a large noise intensi-
ty the deterministic (harmonic) part of the signal became
irrelevant and ∆J was again small. Hence, there was a maximum at
some intermediate value of the noise. When compared against the
white noise case, an increase in the system response was apparent
together with a reduction in the need for tuning the noise, simi-
larly to what was found for the “normal” stochastic resonance: the
bounded character of the probability distribution function for
q < 1 contributed positively to the rate of overcoming the thresh-
old ηc and such a rate remained of the same order within a larger
range of values than for the case of η being a white noise [5].

The dependence of the maximum of ∆J(t) on the parameter q
was also analyzed, and the existence of another resonant-like
maximum as a function of q was observed, implying that it is pos-
sible to find a region of values of q where the maximum of ∆J
reaches optimal values (corresponding to a non Gaussian and
bounded probability distribution function), yielding the largest
system response. That is, a double stochastic resonance effect exists
as a function of both: the noise intensity and q.

Noise induced transition
A system, called the genetic model, that when submitted to a
Gaussian white noise shows a noise induced transition, was also
studied. In previous related works it was shown that, when the
noise is an Ornstein-Uhlenbeck one, a re-entrance effect arose
(from a disordered state to an ordered one, and finally again to a
disordered state) as the noise correlation time τ was varied from
0 to ∞. The same system was studied in [9], but when it was
submitted to the non Gaussian noise indicated above. The main
result showed the persistence of the indicated re-entrance effect,
together with a strong shift in the transition line, as q departed
from q = 1. The transition was anticipated for q > 1, while it was
retarded for q < 1. A conjecture about a possible re-entrance effect
with q was shown to be false.

Final comments
The previously indicated results clearly show that the use of non
Gaussian noises in many noise induced phenomena could pro-
duce significant changes in the system’s response when compared
to the Gaussian case. Moreover, in all cases, it was found that the
system’s response is enhanced or altered in a relevant way, and this
occurs for values of q indicating a departure from Gaussian
behavior, that is: the optimum response happens for q ≠ 1: Clearly,
the study of the variation in the response of other related noise

induced phenomena when subject to such a kind of non Gaussian
noise will be of great interest.

An extremely relevant point is related to some recent work [10]
where the algebra and calculus associated with the nonextensive
statistical mechanics has been studied. It is expected that the use
of such a formalism could help to directly study Eq. (1), without
the need to resort to Eq. (2), and also to build up a nonextensive
path integral framework for this kind of stochastic process.

To conclude, it is worth commenting on a relevant question:
how could it be possible to obtain such a form of noise from, it
may be said, first principles? It is well known that in dynamical sys-
tems with several degrees of freedom evolving with two well
separated time scales, Gaussian noises (white or colored) could be
obtained through an adequate adiabatic elimination of the fast
variables, and assuming some (δ or exponential) correlation
properties. It can be conjectured that the form of noise used above
could result from the existence of a whole hierarchy of time scales
and, associated with it, to an adequate hierarchical adiabatic elim-
ination of the faster variables. However, the proof or rejection of
this conjecture requires some specific work.
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