this difficult task. A few countries had already established, or were creating, national titles in science but the European Community's intentions were unclear, especially since it now appeared possible to obtain an "EC endorsement".

Publications
E. Buckel handed over the position of Editor-in-Chief of Europhysics Letters to R. Balk for whom the "privilege had given me duties". Professor Balk is the proud co-author of the very first paper to have appeared in the journal. Professor Buckel explained that Letters had to cope with an increase in the number of submissions by increasing the number of annual volumes.
P.G. Boswell speaking on behalf of F. James (Chairman, Europhysics News Editorial Board) described the progress that had been made in publishing more Directory-type information and more news — both technical and otherwise. The number of general review articles was significantly smaller in 1991 than in 1990, this being compensated for by "targeted" collections of shorter features. Lower costs arising from the introduction of electronic production techniques had unfortunately been swamped by increases in mailing charges. It was planned to modernise distribution to the IOM's by introducing more cost-effective plastic wrappers.

The 1982 changes also led to a surge in the numbers (both total and first year) of physics students enrolled in Holland's four technical universities [FOM Report 68747 (1991)].

Decisions of EPS Council
At its meeting on 27-28 March 1992, the Council made the following decisions:

- To admit the Physical Societies of Albania, Croatia, Estonia, and Lithuania.
- To accept 397 new Individual Ordinary Members and 8 new Associate Members.
- To accept the proposed budget for 1992 that seeks a surplus of almost 60 kSFR.
- To endorse the proposals for a restructured society, as outlined in the discussion document A New EPS Structure, and to have detailed proposals for implementation tabled at the next Council Meeting.
- To approve the formation of an Astrophysics Division jointly with the European Astronomical Society.
- To accept the appointment of A. Landesman as the Chairman of the East-West Task Force which now becomes the East-West Coordination Committee (EWCC).
- To endorse the initiatives of the East-West Task Force (now the EWCC) and its plan to develop further actions in cooperation with the American Physical Society.
- To endorse the proposed arrangements for the 1993 General Conference and for the 25th Anniversary of EPS.
- To approve the launching of the European Mobility Scheme for Physics Students.
- To accept the notion of a European professional title in physics and to seek proposals for its implementation at the next Council Meeting.

Europhysics Notes

Dutch React to Shortened Degree
Degree courses for physicists in The Netherlands were reduced in length in 1982 to four years in both the universities (doctorandus, drs.) and technical universities (ingenieur, ir.). The average graduation time has meanwhile gone from 6.9 years to 4.9 years in 1991. A report of The Netherlands Physical Society by G. Maurice, published last month, of a survey finalised in October 1991 gauges the effects of the change for the first time. Considering students starting "old style" (OS) courses in 1979-84 and "new style" (NS) courses in 1985-90, the percentage of the numbers of drs. and ir. moving on to further studies (mostly Ph.D. level) increased from 64% for OS to 77% for NS. Of students moving to full-time employment, the percentage of drs. moving to major industrial companies nearly halved (35% to 19%) as compared with ir. where the decrease was much less (45 to 48%). Smaller industry increased its share of physicists in first-time employment by roughly the same amount for both drs. (37 to 44%) and ir. (26 to 37%). Drs. moving to (semi-)government organisations increased from 27 to 36% while the percentage for ir. actually decreased from 19 to 15%.

E.W.A. Lingeman, the secretary of the Commission which made the survey, thinks the trends reflect the believe among graduates that industry seeks a longer training. It will therefore be interesting to see if new style Ph.D.'s are presently starting to enter employment favour industry. For old style Ph.D.'s covered by the survey, the main part (44%) moved to (semi)government, 35% to major industry, and 19% to small companies. Moreover, will equivalent reactions materialise elsewhere? Germany is thinking about reducing, and the UK extending, first-degree courses.

The 1982 changes also led to a surge in the numbers (both total and first year) of physics students enrolled in Holland's four technical universities [FOM Report 68747 (1991)].
explicit policy statement to clarify its position in the Dutch scientific arena. The main task remains the promotion of fundamental research based on scientific importance and technological relevance. Its "outputs" are new knowledge and highly qualified research staff and technicians. FOM's support of physics is not seen as a strict, discipline-oriented approach but an engagement wherever there is a fundamental physics component. This means that FOM will support research at both the 'heart' of physics as well as at the many interfaces with other fields without, however, claiming fields where research is already well-organised. FOM's working area is determined by whether or not a topic brings an innovative contribution to physics.

This policy statement endorses an earlier decision [EN 22 (1991) 103] to reduce the percentage of the basic operational subsidy (82 MHFL in 1992) spent on sub-atomic physics from 44 to 33% by the year 2000. Part of the funds released will go to both "curiosity driven" and strategic/technologically relevant (S/T) research in the same "mainstream" branch of physics (atomic & statistical, quantum electronics, condensed matter, or phenomenology). In addition to the basic operational subsidy FOM receives about 10-15 MHFL a year in ear-marked funds for S/T research from sources such as the EC, Euratom, the Dutch Technology Foundation, the economic affairs ministry, etc. This means that FOM spending on S/T oriented research will rise from today's ≈ 33% of total annual budget to ≈ 40% by 2000.

Implementing the policy has led to some clear objectives in fields of big science of interest to FOM as well as to top-down priority programmes in soft condensed matter and scientific instrumentation. Networks mirroring European trends are being reinforced by giving, for instance, increased management responsibilities to FOM working communities. These communities, made up from professors receiving FOM grants for a given field of research (= 60% of all Dutch physics professors are funded by FOM) provide a way to coordinate research efforts.

Dr. Hans Chang, FOM Director, Professor Lev Blinov, head of the laboratory for liquid crystals, ICM, and Dr. Boris Ostrovsky, ICM, (from left to right) signing an agreement for joint research efforts as part of a Dutch support programme for physicists in the former Soviet Union (photo courtesy of FOM).

The Centro Svizzero di Calcolo Scientifico (CSCS), the Swiss National Supercomputing Resource in Manno on the outskirts of Lugano, started pilot operation last October and its 32 user groups became official last month. The Centre's NEC SX-3, twin processor supercomputer (with a theoretical peak power of 5.5 Gflops) makes it a reference site among other similar European centres in Germany, Holland and the UK. The CSCS, funded by a 40 MSFR federal government grant and managed by the ETH-Zurich, provides computing facilities to Swiss universities, thus complementing Cray-equipped centres at the ETH-Zurich and the EPF-Lausanne. It is planned to reduce the universities share from 90% to 80% of available CPU time as industry becomes more involved. The Director, Dr. Alfred Scheidegger, a biochemist by training, aims to expand applications in climate research where there is now one project with a 4% share of CPU time, as compared with 26% for quantum chemistry, 22% for solid state physics and 18% for high energy physics.

"Swiss Supercomputer Centre"

Swiss Supercomputer Centre

The Centro Svizzero di Calcolo Scientifico (CSCS), the Swiss National Supercomputing Resource in Manno on the outskirts of Lugano, started pilot operation last October and its 25 user groups became official last month. The Centre's NEC SX-3, twin processor supercomputer (with a theoretical peak power of 5.5 Gflops) makes it a reference site among other similar European centres in Germany, Holland and the UK. The CSCS, funded by a 40 MSFR federal government grant and managed by the ETH-Zurich, provides computing facilities to Swiss universities, thus complementing Cray-equipped centres at the ETH-Zurich and the EPF-Lausanne. It is planned to reduce the universities share from 90% to 80% of available CPU time as industry becomes more involved. The Director, Dr. Alfred Scheidegger, a biochemist by training, aims to expand applications in climate research where there is now one project with a 4% share of CPU time, as compared with 26% for quantum chemistry, 22% for solid state physics and 18% for high energy physics.

"Swiss Supercomputer Centre"

Swiss Supercomputer Centre

The Centro Svizzero di Calcolo Scientifico (CSCS), the Swiss National Supercomputing Resource in Manno on the outskirts of Lugano, started pilot operation last October and its 25 user groups became official last month. The Centre's NEC SX-3, twin processor supercomputer (with a theoretical peak power of 5.5 Gflops) makes it a reference site among other similar European centres in Germany, Holland and the UK. The CSCS, funded by a 40 MSFR federal government grant and managed by the ETH-Zurich, provides computing facilities to Swiss universities, thus complementing Cray-equipped centres at the ETH-Zurich and the EPF-Lausanne. It is planned to reduce the universities share from 90% to 80% of available CPU time as industry becomes more involved. The Director, Dr. Alfred Scheidegger, a biochemist by training, aims to expand applications in climate research where there is now one project with a 4% share of CPU time, as compared with 26% for quantum chemistry, 22% for solid state physics and 18% for high energy physics.

Swiss Supercomputer Centre

Swiss Supercomputer Centre

The Centro Svizzero di Calcolo Scientifico (CSCS), the Swiss National Supercomputing Resource in Manno on the outskirts of Lugano, started pilot operation last October and its 25 user groups became official last month. The Centre's NEC SX-3, twin processor supercomputer (with a theoretical peak power of 5.5 Gflops) makes it a reference site among other similar European centres in Germany, Holland and the UK. The CSCS, funded by a 40 MSFR federal government grant and managed by the ETH-Zurich, provides computing facilities to Swiss universities, thus complementing Cray-equipped centres at the ETH-Zurich and the EPF-Lausanne. It is planned to reduce the universities share from 90% to 80% of available CPU time as industry becomes more involved. The Director, Dr. Alfred Scheidegger, a biochemist by training, aims to expand applications in climate research where there is now one project with a 4% share of CPU time, as compared with 26% for quantum chemistry, 22% for solid state physics and 18% for high energy physics.

Swiss Supercomputer Centre

Swiss Supercomputer Centre

The Centro Svizzero di Calcolo Scientifico (CSCS), the Swiss National Supercomputing Resource in Manno on the outskirts of Lugano, started pilot operation last October and its 25 user groups became official last month. The Centre's NEC SX-3, twin processor supercomputer (with a theoretical peak power of 5.5 Gflops) makes it a reference site among other similar European centres in Germany, Holland and the UK. The CSCS, funded by a 40 MSFR federal government grant and managed by the ETH-Zurich, provides computing facilities to Swiss universities, thus complementing Cray-equipped centres at the ETH-Zurich and the EPF-Lausanne. It is planned to reduce the universities share from 90% to 80% of available CPU time as industry becomes more involved. The Director, Dr. Alfred Scheidegger, a biochemist by training, aims to expand applications in climate research where there is now one project with a 4% share of CPU time, as compared with 26% for quantum chemistry, 22% for solid state physics and 18% for high energy physics.

Swiss Supercomputer Centre

Swiss Supercomputer Centre

The Centro Svizzero di Calcolo Scientifico (CSCS), the Swiss National Supercomputing Resource in Manno on the outskirts of Lugano, started pilot operation last October and its 25 user groups became official last month. The Centre's NEC SX-3, twin processor supercomputer (with a theoretical peak power of 5.5 Gflops) makes it a reference site among other similar European centres in Germany, Holland and the UK. The CSCS, funded by a 40 MSFR federal government grant and managed by the ETH-Zurich, provides computing facilities to Swiss universities, thus complementing Cray-equipped centres at the ETH-Zurich and the EPF-Lausanne. It is planned to reduce the universities share from 90% to 80% of available CPU time as industry becomes more involved. The Director, Dr. Alfred Scheidegger, a biochemist by training, aims to expand applications in climate research where there is now one project with a 4% share of CPU time, as compared with 26% for quantum chemistry, 22% for solid state physics and 18% for high energy physics.

Swiss Supercomputer Centre

Swiss Supercomputer Centre

The Centro Svizzero di Calcolo Scientifico (CSCS), the Swiss National Supercomputing Resource in Manno on the outskirts of Lugano, started pilot operation last October and its 25 user groups became official last month. The Centre's NEC SX-3, twin processor supercomputer (with a theoretical peak power of 5.5 Gflops) makes it a reference site among other similar European centres in Germany, Holland and the UK. The CSCS, funded by a 40 MSFR federal government grant and managed by the ETH-Zurich, provides computing facilities to Swiss universities, thus complementing Cray-equipped centres at the ETH-Zurich and the EPF-Lausanne. It is planned to reduce the universities share from 90% to 80% of available CPU time as industry becomes more involved. The Director, Dr. Alfred Scheidegger, a biochemist by training, aims to expand applications in climate research where there is now one project with a 4% share of CPU time, as compared with 26% for quantum chemistry, 22% for solid state physics and 18% for high energy physics.