Inertial Confinement Fusion

A report from BEAMS'88:
7th International Conference on High-Power Particle Beams

The BEAMS'88 conference, held on 4-8 July, 1988, at the Karlsruhe conference centre, FRG, was organized by the Karlsruhe Nuclear Research Center (Chairmen: Prof. A. Citron and Prof. G. Kessler) — with the sponsorship of five scientific institutions (EPS, Univ. of Karlsruhe, DPG, IEEE German Section, VdE). BEAMS'88 was the 7th of a series of international conferences held every two years. About 300 participants from leading laboratories from all over the world presented 215 original research papers and 12 review papers in 14 oral sessions (single-sessions) and 33 poster sessions.

As in earlier BEAMS conferences, a central topic was the scientific and technological progress in approaches to inertial confinement fusion (ICF) which are based on pulsed particle beams (micro pellet fusion, especially with light-ion beams) and pulsed power discharges (plasma foils, liner implosions, 2-pinch).

According to present estimates, a driver for break-even experiments with particle or laser beams must deposit an energy of 5-10 MJ on a target of less than 1 cm in diameter in a period of less than 30 ns. For the ICF approach using particle beams, an essential step on the way towards reaching this objective was the recent installation of the PBFA II fusion device at Sandia. The goal is to generate a lithium ion beam of approximately 100 TW in power and more than 1 MJ in energy and with it to verify ICF ignition physics. During the test experiments carried out on the accelerator with reduced voltage, and reported at the conference, ion pulses of up to 0.5 MJ beam energy were generated. The focussing of the ion beam was still imperfect, so that target experiments will have to wait until the ion diodes used for beam generation have been further improved. Various ion diode concepts have been tried in the past. Some proved successful at power levels \(\leq 1 \) TW and the problems arising at higher power levels still, do not seem unsurmountable. Recent developments in diagnostic methods broaden the scientific and technological knowledge needed for the construction of high-focussing light-ion diodes with multi-terawatt beam power.

In the USSR, the ICF approach with liner implosions where a high current discharge is produced in the thin solid or gaseous walls of a hollow cylinder, which then implodes, has obtained high priority in particular at the Kurchatov Institute in Moscow. In this approach, the soft X-ray hohlraum radiation generated in an imploding liner discharge illuminates a fusion pellet which implodes in turn so that fusion conditions are reached. The object of these experiments which are carried out at the large ANGARA-V-1 pulsed power generator, is to obtain stable implosions.

Impressive results were also reported from the Japanese laser programme at Osaka where considerable improvements in the quality of pellet implosions by lasers had been achieved. This was a very important contribution since it underlines the need for giving the highest priority to the development of large scale drivers for break-even experiments, in particular, ion diodes.

Breakthroughs in implosion experiments of pellets by X-rays were claimed by the American side in as yet unpublished experiments summarized by the representative of the Department of Energy, S. Kahalas, in his statement: "ICF is not a question of the «if», it is only of the «when»!"

There were various other fields to which the scientific topics of this BEAMS conference had been dedicated: high-power charged particle beams (including cluster beams) for science and industry (including magnetic confinement fusion), high-voltage pulsed-power generators, interaction of particle beams with matter and diagnostics methods, free electron lasers, generation of high-power X- and \(\gamma \)-radiation, and generation of high-power microwave radiation. (The latter topic had a historical relation to the BEAMS'88 conference date and venue: in 1888, 100 years before BEAMS'88, Heinrich Hertz had discovered the electromagnetic waves at Karlsruhe, — in the form of low-power coherent microwaves.) It is not the purpose of this article to review the large amount of progress reported in these fields. The interested reader is invited to request a free copy of the BEAMS'88 Book of Abstracts from: Prof. G. Kessler, KFK, D-3640, D-7500 Karlsruhe 1, W. Germany. The 2-volume BEAMS'88 Proceedings with complete texts of all conference papers can be obtained from the Literaturabteilung at the same address; price: DM 120. —

BEAMS'88 has emphasized the liveliness of these fields. Great hopes were expressed for further scientific breakthroughs before the community will meet again at BEAMS'90, which will take place at Novosibirsk, USSR, in the summer.

H.U. Karow
Organizing Secretary of BEAMS'88

W. Schmidt
Scientific Secretary of BEAMS'88