As usual, the annual meeting of the "European Group for Atomic Spectroscopy (EGAS)" took place in the second week of July. Attended by 264 spectroscopists from 19 countries, both West and East, splendidly organized at the Garching Research Centre by H. Walther and his colleagues from the Physics Department of the University of Munich and the Max-Planck-Institut for Plasmaphysics at Garching, this was a fitting occasion for the 10th anniversary. EGAS, a section of the Atomic Physics Division of EPS, in its development has, from the beginning, kept a style of its own. When founded at Caen (Normandy) its main aims were formulated as being to: (i) bring together regularly European atomic spectroscopists in order to foster the exchange of results and ideas and, different from many other societies and groups, (ii) give especially the younger colleagues a chance — a theme constantly repeated.

One main trend of present scientific work is that the laser seems no longer to be mainly an object of research per se, but rather has become a research tool for obtaining results in atomic, nuclear and also fundamental physics. Here W. Demtröder reviewed the latest state of high resolution or even sub-Doppler spectroscopy and the more sensitive detection techniques as, e.g., saturation interference spectroscopy within a Jamin-Interferometer.

For one of these newer methods — "Fast Ion Beam Laser Spectroscopy," where the Doppler width is reduced by "acceleration cooling," the basic principles, essential requirements and significance were dealt with in detail by M.L. Gaillard and in a number of contributed papers. For the future, important results may be expected for high resolution spectroscopy of atoms and molecules, for collisions in excited states, and for hyperfine structure (hfs) research in "exotic" atoms.

The importance of the laser as a tool became further manifest by the fact that many — also more conventional — applications of lasers were reported in a large number of sessions and papers. They were concerned, e.g., with hfs and isotope shift (IS) investigations, lifetime measurements, the search for the first optical transition in francium or the determination of the fine structure (FS) separation of high Rydberg states by quantum beats (applying an electric field for the detection).
Physics of the Actinides

The Third International Conference on the Electronic Structure of the Actinides, AN 78, which took place on the University campus of Grenoble from 30 August to 1 September, belongs to a series which started in Argonne in 1974, followed by Wroclaw in 1976. The next conference will most likely be held near Berkeley in 1981. Organized jointly by the Centre d’Etudes Nucléaires de Grenoble of the CEA and the European Institute of Transuranium Elements at Karlsruhe, AN 78 gathered together 130 participants from 14 countries (mainly European).

The scientific programme was divided into six sessions, each corresponding to one half day and consisting of two invited talks and poster communications. The themes of the sessions indicate the ground covered:
1. Physical properties of metallic magnetic compounds, 5f-band approach;
2. Physical properties of metallic magnetic compounds, 5f-localized approach;
3. Sample preparation and characterization for physical measurements;
4. Physical properties of metals and non-magnetic alloys;
5. Physical properties of ions, ionic and semi-conducting compounds;
6. Correlations between electronic structure, thermodynamics and crystal structure.

Three panel discussions were also held upon the following topics:
- Aspects of the 5f electrons (de) localization;
- Availability and sample preparation;
- Limits of solid state studies on actinides
- "NACI" structure actinide compounds.

In this conference centred on the condensed matter physics of the actinides, great importance was attached to the chemistry. This is due to a number of factors. First, because the transuranium elements do not exist in nature and have to be prepared through nuclear reactions (mainly in neutron reactors), weighable amounts of actinides are available only up to einsteinium, which sets the limit for solid state studies. Only 10^10 atoms of the next actinide, fermium, are available. Second, the preparation and characterization of actinide compounds necessitate, apart from special equipment found only in highly radioactive laboratories, the use of techniques adapted to the high cost and scarcity of the actinide materials which increases progressively as we go to the right of the actinide series: kg quantities of 244Cm, g quantities of 252Cf, mg quantities of 249Cf, 248Cm, total in the world. Third, it appears that for many experimental techniques (magnetization, transport, optical, X ray, neutron), single crystals are not just very useful but often necessary. These are precisely the techniques from amongst which we hope to see major advances in actinide physics.

From an experimental viewpoint indeed, the availability of sufficiently large uranium single crystals has been the stimulus for many of the detailed studies presented. This is especially true for the "NACI" type compounds, where neutron studies have emerged as a major technique in the actinide field. Both neutron and magnetic measurements revealed the importance of anisotropy effects, and gave valuable insight into the valency and spatial character of 5f electrons (localized versus itinerant).

From the theoretical viewpoint, new results have been presented on the electronic structure of actinides arriving at mainly through band structure calculations; the complex alpha-phase of uranium has been attacked successfully. Attempts have been made also to utilize more physically transparent methods, one result being the calculation of bulk quantities such as the atomic volume of actinide pure metals. The bonding contribution from 5f electrons was shown to be predominant in the beginning of the actinide series, in agreement with their complex crystallographic structure.

For the future, two conclusions can be drawn from the conference:
- The extension of single crystal preparation for transuranium compounds is a major need for further progress to be made; AN 78 remained essentially a "Uranium" conference.
- Apart from a foreseeable development of neutron experiments, optical experiments (especially photoemission techniques) should develop and give some contribution to the still open subject of 5f electrons (de) localization.

M. Belakhovsky
(Centre d'Etudes Nucléaires, Grenoble)