
known UV problems that require renormalization. However, in
LQG, background independence in fact assures that this limit
exits without any UV divergences. For finite value of the e the
extra loop created by the quantum constraint can entangle the
weave of links and nodes in the given spin network around the
intersection (first three diagrams on the l.h.s. of Fig. 4). As e
becomes smaller the added loop shrinks and there is a critical value
ec after which it can no longer wind around any of the neighboring
links. At this point changing the value of e amounts to a trivial
deformation of the extra loop that, according to the combinatorial
nature of the quantum states of gravity, has no physical effect.
Therefore, for sufficiently small e the action of the regulated
constraint becomes regulator independent and the limit is defined
without need of renormalization (see Fig. 4). This result also holds
when coupling gravity with the matter of the standard model; the
combinatorial nature of the states of quantum gravity provides a
physical regulator for all interactions.

Perspectives and Conclusions
We have discussed how the dynamical equation of quantum gravity
can be promoted to a quantum operator, and how the dynamics of
the theory is in the solutions of the quantum Hamiltonian constraint.
Although many solutions to the equation are known, there is no
complete control of the space of solutions at present. A systematic
approach to investigate the solution space is the path integral
representation which in the case of LQG is known as the spin
foam approach. In it, physical transition amplitudes are computed
as sums of amplitudes associated with histories of spin network
states (Fig. 5). These histories can be interpreted as the quantum
counterpart of space-time: they represent the quantum evolution
of the quantum states of space geometry.

Despite the fact that a full understanding of the dynamics of
LQG has not yet been achieved, there are interesting physical situ-
ations where one can bypass these limitations. One of these is the

computation of black hole entropy briefly mentioned above and the
other is the application of the framework to systems with additional
symmetry. Important examples are the study of quantum cosmology
and the near-singularity regime in black hole physics, where due to
symmetry assumptions most of the technical problems of the full the-
ory can be overcome. Even though these symmetry-reduced models
must be regarded as toy models, as an infinite number of degrees of
freedom are ignored in the treatment, there are interesting results that
indicate that the singularity problem of classical general relativity would
be resolved due to the fundamental discreteness predicted by LQG.

Another important open issue in LQG is the semiclassical
limit: how to recover from the fundamental polymer-like excita-
tions of LQG the smooth physics of general relativity and the
standard model at low energies.

LQG realizes a unification between the principles of general
covariance and those of quantum mechanics. The approach sug-
gests that the outstanding problem of divergences in QFT’s and
singularities in classical general relativity are resolved when the
quantum dynamical degrees of freedom of gravity are included in
a background independent manner. The results obtained so far
are encouraging; future research will tell whether all this is consis-
tent with the so far elusive nature of quantum gravity. n
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Most physicists realize that the human eye is not made for
seeing under water. For one thing, if we open our eyes

under water to see what’s going on, our vision is blurred. The reason
is obvious: since the index of refraction of the inner eye is practi-
cally that of water, we miss the refractive power of the strongly
curved cornea surface.With its 1/f of about 40 diopters it forms an
even stronger lens than the actual eye lens itself. Could we repair
that with positive lenses? In view of the strong curvature of the
cornea surface (radius 8 mm), the
idea of replacing it by a glass lens
in a water environment is beyond
hope.We really need to restore the
air-water interface in front of the
cornea, and that is precisely what our diving   
mask does.

But there is more to it:
under water, our field of
vision is reduced dramatically.
Whereas we normally have a field
of more than 180° due to the refraction at the air-cornea

interface, we loose that benefit once we’re under water. The diving
mask does not repair that, as schematically indicated in the figure.

So, scuba divers, beware! You have to turn your head much
further than you may think necessary, if you want to be sure that
you are not followed by a
shark. n

Physics in daily life: seeing under water
L.J.F. (Jo) Hermans, 
Leiden University • The Netherlands
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