
mobilities (because of their differences in viscosity or density) in
systems such as a shallow layer or a porous medium, when the fluid
with highest mobility is forced through the other fluid. As soon the
system responds non-linearly to the driving force, enhanced inter-
nal fluctuations (such as concentration fluctuations) are produced
characterizing the early stage of the fingering process. If the fluids
are miscible, the mixing zone at the interface between the two flu-
ids grows as the fluid with high mobility displaces the other fluid,
and there is a dynamical transition where the exponent of the
growth of the mixing length of the interfacial zone, Lmix ∝ t µ,
changes from µ = 1/2 (the value typical of a diffusive process) to a
larger value. In the diffusive regime (before any fingering pattern
becomes visible), the flow produces local concentration gradients
which induce mobility fluctuations thereby triggering vorticity
fluctuations. The concentration field in Fig.1 shows that a ”land-
scape” of alternating hills and wells has developed. In each ”blob”,
the concentration field exhibits a two-dimensional q-Gaussian
profile as illustrated in the upper panel of Fig.2 obtained by a sec-
tion plane cut through the extrema in Fig.1. Such q-Gaussians are
precisely solutions to the generalized diffusion equation. Now the
remarkable fact is that the distribution that follows from a q-
exponential profile has a power law behavior. In two dimensions
and for a q-Gaussian – as for the case of the concentration fluctu-
ations c in the fingering pre-transitional regime – the distribution
is simply P(c) ∝ c-q, as illustrated in Fig.2.

The example presented here is representative of a generic class
of driven nonequilibrium systems where q-exponentials and
power law distributions are the signature of long-range interac-
tions and whose dynamical behavior is governed by non-linear
equations, such as the generalized equation described above.

What has been shown is that during the onset of fingering, one
can identify precursors which exhibit statistical features typical of
nonextensive statistics. Then the question arises as to whether there
is a possible physical interpretation of the origin of nonextensivity?
The driving force produces a spatial sequence of alternating struc-
tures, which, if they were independent, would exhibit an ordinary
Gaussian profile originating from local diffusion centers (δ-func-
tions), and would be described by a classical advection-diffusion
formulation. However, when growing, these structures develop into
overlapping Gaussian blobs, and what the analysis shows is that by
renormalizing the overlapping Gaussians, they are recast into a sum
of scale invariant independent q-Gaussians. Similar statistical prop-
erties have been obtained in other nonequilibrium systems which
are discussed in companion articles in the present issue.
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C omplexity refers to the quality that certain systems possess of
being intricate and hardly predictable. Ranging from the

turbulent flows that form our atmosphere to the human languages,
our life has plenty of examples of natural complex behavior.
Statistical Mechanics, the area of physics that deals with the prob-
lem of explaining the macroscopic world from the dynamics of its
components, faces nowadays the challenge of applying the stan-
dard reductionist program to all these fascinating systems.

Even when the mathematical equations for describing its time
evolution may be only a few, a complex system is composed of a
huge number of interacting constituents. These constituents, usu-
ally very simple ones, interact giving rise to the emergence of an
unexpected collective phenomenology, where cause and effect
become subtle and where the long time behaviour is no longer
obvious. For succeeding in the plan of explaining complex behav-
ior from first principles, physicists have been looking for simplified
models, mathematically tractable and able to catch the essence of
complexity.

Suppose you have such a complete knowledge on the micro-
scopic details of certain system that you can write down its
Hamiltonian. Now the natural question that arises is the following
one: which are the mechanical conditions the system must fulfill in
order to guarantee that the statistical mechanics calculations would
predict, with an adequate degree of accuracy, the time averaged
quantities obtained from a laboratory experiment.And when trying
to answer such an apparently simple question, one discovers that
even the simplest systems can give place to very intricate behaviour.

Perhaps the simplest Hamiltonian model of interacting parti-
cles one can image is the so called Hamiltonian Mean Field (HMF)
model. Unlike most of the models we are used to deal with when
modeling complexity, in this case, not only the dynamical vari-
ables but also the interactions among them are extremely simple,
lacking any trait of randomness or frustration. The system con-
sists of a set of N interacting particles or rotators of unitary mass,
each one confined to move around its own unitary circle [1]. Each
particle is then mechanically described by an angle θi and the
corresponding conjugate momentum pi . The dynamics of the sys-
tem is ruled by the following Hamiltonian:

(1)

The first term is the kinetic energy associated with the motion of the
particles, while the second one corresponds to the interaction poten-
tial (the summation running over all different pairs of particles).
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There are a few features of the model that are worth mentioning
here. In the first place, it represents a fully connected system, in
which each particle interacts with all the others, independently of
the distance between them. As it is well known, this unrealistic
approach drastically simplifies the mathematical treatment of the
thermostatistics of many models, keeping track anyway of its qual-
itative thermodynamical behavior, at least at high enough
dimensionality. Second, the interaction is ferromagnetic in nature,
in the sense that the potential energy of a pair of interacting parti-
cles [1-cos(θi-θj)] tends to synchronize their movements. Finally,
this model can be considered a kinetic version of the XY mean field
magnetic model, which is without any doubt one of the most
studied statistical systems. In fact, we can associate with each
particle a two-dimensional local magnetization vector  

→
mi = (cos θi

; sin θi) and correspondingly a global order parameter:

(2)

The thermodynamics of this model can be easily solved in the
canonical ensemble [1], and this calculation predicts the existence
of a continuous phase transition at Tc = 1/2 between a high temper-
ature disordered phase (characterized by  

→
M = 

→
0), where rotators

uniformly distribute over the circle, and a low temperature ordered
phase ( 

→
M ≠

→
0), where rotators tend to synchronize their movements.

Most of the magnetic models in statistical mechanics do not
take into account the kinetic energy. This is mainly because of the
well established fact that in any measure based statistical theory
(microcanonical, canonical or grandcanonical) its contribution to
thermodynamical quantities is straightforward (that of a simple
ideal gas). However, the inclusion of this term in (1) provides a
proper deterministic microscopic dynamics. That is, instead of
putting in by hand an external dynamics that would force the
system to visit phase space according, for instance, to the usual
Boltzmann–Gibbs probability distribution, we can now investigate
the true dynamics by simply integrating Newtonian equations 

(3)

In doing so, one discovers that, despite its apparent simplicity, this
model displays a surprisingly rich variety of complex dynamical
behaviour[2].

Let us assume that the system is in thermodynamical equilibrium
with a thermal bath at temperature T. Then, through the canonical
ensemble calculation, we can obtain the mean energy per particle
U/N = <H/N > by simply assuming, as we learn in any course on
Thermostatistics, that the system visits microscopic configurations
according to the Boltzmann–Gibbs measure. Alternatively, we may
consider a completely isolated system and prepare it initially with a
given energy per particle. If we measure the time average of twice the
mean kinetic energy per particle 2 

−
K /N along a trajectory, then one

would expect this last quantity to coincide with the temperature T
of the original thermal bath (after suitable transients). This ergodic
assumption is the master key of the thermostatistics method applied
to systems in true equilibrium. But unfortunately complexity seems
to occur far away from equilibrium.

There are plenty of physical systems which stay in macroscopic
almost stationary states (then, presumably predictable ones) but
where the canonical recipe fails. For instance, a window glass or a
living cell. Our simple HMF is an excellent prototype for  discussing
these fascinating questions mainly because, as we will describe in
short, the canonical prescription seems to be insuffi- cient to
describe its long time behavior. In particular, the HMF is very sen-
sitive to its initial preparation, specially just below the critical point.

θ
.
i = pi

p
.
i = My cos θi - Mx sin θi , for 1 ≤ i ≤ N

Depending on the initial conditions, the system may become
stacked into non-equilibrium long-standing quasi-stationary tra-
jectories. Along these quasi–stationary solutions, whose lifetimes
diverge in the limit N → ∞, the time average of any thermodynam-
ical quantity does not coincide with the value predicted by the
canonical thermostatistics calculations. The analysis of this complex
phenomenology had been the subject of extensive research, includ-
ing a certain degree of sane controversy [2]. Actually, it presents the
kind of drastic slowing down observed in disordered systems, as it
happens, for instance, in spin glasses after a sudden quenching into
the low temperature phase. Furthermore, the caloric curve (the
relationship between the internal energy of the system and its tem-
perature), obtained by integrating the equations of motion of the
isolated system, strongly disagrees, in the subcritical region, with
that expected in the canonical ensemble. Interestingly, this anom-
alous caloric curve closely resembles the one observed in
multifragmentation of clusters of ions or atomic nuclei, where
regions with negative specific heat appear. Recently we have shown
that this anomalous behavior can be understood in terms of the
topology of the potential energy function: the system can not
attain true equilibrium because it gets trapped into a sequence of
critical points of V/N [3], as also verified in many glassy models.

A very simple way of characterizing the relaxation dynamics of
a complex system is through the analysis of the two-time auto-cor-
relation function C(t , t’), which can exhibit history-dependent
features, usually referred to as aging. For systems that have attained
true thermodynamical equilibrium, memory effects disappear
and only time differences make physical sense. Under these condi-
tions, one expects that C(t , t’) ≡ C(t - t’). However, for systems
exhibiting aging, a much more complex dynamical behavior is
observed. (see for instance [4]). Inspired by the strong analogy
between the quasistationary trajectories already described and the
out of equilibrium states observed in glassy systems, we decided to
analyze the behavior of the two-time auto-correlation function of
the HMF model [5]. The state of the system in phase space is
completely characterized by giving the state vector →x ≡ (

→
θ, →p). Then,

the crude two–time auto-correlation function is

(4)Co(t + tw, tw) = < →x (t + tw) . →x (tw)>,
where <…> stands for average over several realizations of the
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m Fig. 1: Normalized two-time auto-correlation function of
the state variable (

→
θ ; →p ) vs. time, for a value of the total

energy (subcritical) and for initial conditions that guarantee
that the system will get trapped into a quasi stationary
trajectory. Data correspond to averages over 200 of such
trajectories.The waiting times are tw = 8 x 4 n, with n = 0; …; 6.
The dependence of C on both times is evident.



dynamics. Afterwards, the auto-correlation function is suitable
centered and normalized to remain within the interval [-1, 1].

As we have previously mentioned, because we are dealing with
a well defined Hamiltonian system, it is possible to analyze its
proper microscopic dynamics. But macroscopic systems always
involve such a huge number of interacting particles that the
analytical integration of the equations of motion of all the con-
stituents is out of possibility. Then we must be able to integrate
their equations of motion with the help of computers (that is
what we normally call a numerical simulation). Fortunately, for
the system we are interested in, the numerical integration of the
coupled equations of motion is a very simple task, which can be
carried out even on a modern personal computer, due to its
mean-field character. In the cases presented here, the system was
always prepared in a “water bag” initial condition, that is, all the
angles were set to zero while the momenta were randomly  chosen
from a uniform distribution with zero mean and such that the
system has total energy U. Since for these initial configurations,
the total energy is purely kinetic, we emulated the most drastic
cooling down compatible with the chosen fixed energy.

In Fig. 1 we plot the normalized two-time autocorrelation
function C(t + tw , tw) , for U/N = 0.69, N = 1000 and different
waiting times (increasing from bottom to top). The value of the
specific energy, together with the water bag initial condition, guar-
antees that, typically, the system will get trapped into a
quasi-stationary trajectory as desired. In particular, for the values
of U and N chosen, the discrepancy between canonical predic-
tion and microcanonical simulations is the most pronounced one.
We clearly note history dependence: for a given fixed tw , the
system remains in a quasi–equilibrium regime with temporal
translational invariance up to a time of order tw. Thereafter, the
auto-correlation function presents a slow algebraic decay and a
strong dependence on both times. Furthermore, the longer the
waiting time tw, the slower the decay of the correlation.

It is a well established fact that, despite its verified ubiquity in
nature, a careful analysis of the aging phenomenology can give valu-
able information about the microscopic mechanisms involved in
the slowing down of the dynamics. In particular, since a general
microscopic theory for aging is still lacking, scaling properties can
offer a qualitative description of the microscopic phenomenology.

Fortunately, a large body of evidence suggests the existence of only
a few dynamical universality classes associated with the out-of-
equilibrium relaxation of a model, as occurs, for instance, in coars-
ening dynamics or critical phenomena, from which one can extract,
by analogy, valuable conclusions. Following these ideas we have
looked for the functional dependence of C(t + tw, tw) on both times,
tw and t, by trying different data collapses. In Fig. 2 we present the
best data collapse obtained for the results of the three largest wait-
ing times displayed in Fig. 1. The resulting scaling law shows that:

(5)C(t + tw, tw) = f (t/tw
β)  

for the whole range of values of t/tw considered. Note that, for
t << tw it holds that f (t/tw

β) ~ (t/tw
β)-λ. Surprisingly, this kind of

scaling behavior is not usual in ordered systems, like the one here
studied. Instead, this is the same kind of scaling observed in real
spin glasses, which are characterized by the existence of high
degrees of randomness and frustration [4]. The solid line corre-
sponds to the best fit of the data with the q-exponential function.
This function naturally arises within the generalized thermosta-
tistics introduced by Tsallis [6]. One sees that q = 1 + 1/λ,
yielding q ≈ 2.35. Notice that the q-exponential allows to fit the
whole simulated time span, concluding that:

(6)C(t + tw, tw) ∝ expq (-t/tw
β) 

This affirmation is corroborated by the plot in the inset of Fig. 2,
where the same data of the main figure are represented as lnq[C(t
+ tw, tw)] vs. t/tw

β , yielding an almost perfect linear behavior. It is
worth mentioning that similar fittings were obtained for other sys-
tem sizes. Later on, these simulations were remade by Pluchino,
Rapisarda and Latora [7] who verified that the sub-aging regime
observed (β < 1) is mainly due to the contribution of the momen-
ta. Instead, the contribution of the angles to the correlation
function displays the so called simple aging regime C(t, t’) ~ t/tw,
which can be easily understood in terms of the angular coordinates.

Finally, in Fig. 3, we present a further connection between
dynamical anomalies and generalized Tsallis thermostatistics. This
plot, obtained from [8], presents the probability distribution
function (PDF) of the angular position, for a system of N = 1000
rotators, initially prepared in the same initial conditions used for
analyzing aging, and at different times. It has been reported, some
years ago, that, in the quasi-stationary regime, the angles evolve
super-diffusively [9] (see also inset of Fig. 3, where the squared
deviation is plotted as a function of time). Additional information
is obtained looking not only at the squared deviation but at the
whole distribution of angles. Curiously, after the meta-equilibrium
regime settles, the PDFs can be well described by q-Gaussian
shapes. The value of parameter q increases with time reaching a
steady value q ≈ 1.5[8]. The ultimate relationship between this
value of q and that obtained previously from the aging curves
remains an open question that deserves further analysis [10].

In conclusion, we have discussed two relaxational features
(aging and spreading of angles) of the HMF, a paradigm of long-
range couplings. Along the quasistationary solutions, both
features present traits of generalized exponential behavior. These
traits may be a reflection of the complex structure of the phase
space regions where quasi-stationary states live. If that were the
case, then we would expect that the new generalized thermostatis-
tics introduced by C. Tsallis in 1988 [6], inspired in multifractal
geometries, could offer a novel measure-based theory for predict-
ing the mean values of a physical system when confined in
quasi–stationary long living states. Despite the proper complexity
of this enterprise, the manageability of the HMF model invites
further and deeper investigations along these lines.
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m Fig. 2: Auto-correlation function vs. scaled time.The data
are the same shown in Fig. 1 for the three largest tw, but
suitably scaling the time coordinate makes the data collapse
into a single curve.The gray solid line corresponds to a q-
exponential fitting. Inset: lnq-linear representation of the
same data, with q ≈ 2.35. Linearity indicates q-exponential
behavior.
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During the last few decades of the 20th century the scientific
community has recognized that in many situations (and

against everyday intuition) noise or fluctuations can trigger new
phenomena or new forms of order, like in noise induced phase
transitions, noise induced transport [1], stochastic resonance [2],
noise sustained patterns, to name just a few examples. However, in
almost all the studies of such noise induced phenomena it was
assumed that the noise source had a Gaussian distribution, either
white (memoryless) or colored (that is, with “memory”). This was
mainly due to the difficulties in handling non Gaussian noises and
to the possibility of obtaining some analytical results when working
with Gaussian noises. In addition to the intrinsic interest in the
study of non Gaussian noises, there has been some experimental
evidence, particularly in sensory and biological systems, indicating
that at least in some cases the noise source could be non Gaussian.

This article is a brief review on recent studies about some of
those noise induced phenomena when submitted to a colored (or
time correlated) and non Gaussian noise source. The source of
noise used in those works was one generated by a q-distribution
arising within a nonextensive statistical physics framework [3]. In
all the systems and phenomena analyzed, it was found that the
system’s response was strongly affected by a departure of the noise
source from the Gaussian behavior, showing a shift of transition
lines, an enhancement and/or marked broadening of the systems
response. That is, in most of the cases, the value of the parameter
q optimizing the system’s response resulted q ≠ 1 (with q = 1
corresponding to a Gaussian distribution). Clearly, this result
would be highly relevant for many technological applications, as
well as for some situations of biological interest.

Non gaussian noise
In order to introduce the form of the non Gaussian noise to be
used, we start considering the following form of a Langevin or
stochastic differential equation (that is, a differential equation
with random coefficients), with additive noise 

(1)x
.
= f (x, t) + η(t),

where η(t) is the stochastic or noise source. Usually, it is assumed that
such noise source corresponds to a Gaussian distributed variable,
having a correlation C(t - t’) = <η(t)η(t’)>. If the noise is “white” (a
particular form of Markovian or memoryless process), we have
C(t - t’) ~ δ(t - t’), while for a typical Ornstein-Uhlenbeck process,
we have C(t - t’) ~ exp[-(t - t’)/τ], with τ the “correlation time”.

However, motivated by previous work based on a nonexten-
sive thermostatistics distribution [3], it was assumed that the
noise η(t) was a non Gaussian and non Markovian process (that
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m Fig. 3: Histogram of normalized angles at different times
of the HMF dynamics. Parameters and initial conditions are
the same used in previous figures. Notice that at long times,
the histogram is of the q-Gaussian form. Inset: squared
deviation as a function of time. It follows the law σ 2 ~ t γ, with
γ > 1, signaling superdiffusion.


