There is a plethora of open problems, as can be easily guessed.
Both at the level of the foundations (e.g., the dynamical origin
[17]) and at that of specific applications. The fact that some basic
questions are not yet fully understood even for Boltzmann-Gibbs
statistics does not make the task easy. As an illustration of an
important open problem let us mention long-range-interacting
Hamiltonians. Although many favorable indications are avail-
able in the literature, it is still unknown, strictly speaking, if and
how the present theory is applicable, and what is the value of g
as a function of the range of the forces and of the space dimen-
sion. Solutions of problems such as this one are obviously very
welcome. Let us finally mention that related or even more gen-
eral approaches than the present one are already available in the
literature. Such is the case of the Beck-Cohen superstatistics
and the Kaniadakis statistics, that have already shown interesting
specific applications.
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n equilibrium statistical mechanics, the inverse temperature 3 is
I a constant system parameter — but many nonequilibrium sys-
tems actually exhibit spatial or temporal temperature fluctuations
on a rather large scale. Think, for example, of the weather: It is
unlikely that the temperature in London, New York, and Firenze is
the same at the same time. There are spatio-temporal temperature
fluctuations on a rather large scale, though locally equilibrium sta-
tistical mechanics with a given fixed temperature is certainly valid.
A traveller who frequently travels between the three cities sees a
‘mixture’ of canonical ensembles corresponding to different local
temperatures. Such type of macroscopic inhomogenities of an
intensive parameter occur not only for the weather but for many
other driven nonequilibrium systems as well. There are often cer-
tain regions where some system parameter has a rather constant
value, which then differs completely from that in another spatial
region. In general the fluctuating parameter need not be the inverse
temperature but can be any relevant system parameter. In turbulent
flows, for example, a very relevant system parameter is the local
energy dissipation rate €, which, according to Kolmogorov’s theo-
ry of 1962 [1], exhibits spatio-temporal fluctuations on all kinds of
scales. Nonequilibrium phenomena with macroscopic inho-
mogenities of an intensive parameter can often be effectively
described by a concept recently introduced as ‘superstatistics [2].
This concept is quite general and has been successfully applied to a
variety of systems, such as hydrodynamic turbulence, atmospheric
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A Fig. 1: Time series of a temporal wind velocity difference
u(t) (6= 60 min) recorded by anemometer A every 5 min for
one week (green line) and the corresponding parameter [(t)
(red line), as well as the corresponding standard deviation
o(t) (blue dotted line), both for a 1 hour window.
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A Fig. 2: Rescaled probability density of the fluctuating

parameter f3, as obtained for the Florence airport data. Also

shown is a Gamma distribution (dashed blue line) and a
lognormal distribution (solid red line) sharing the same

mean and variance as the data. The data are reasonably well

fitted by the lognormal distribution.
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A Fig. 3: Probability density of the local variance parameter

B as extracted from a time series of longitudinal velocity
differences measured in a turbulent Taylor-Couette flow at

Reynolds number Re = 540000 [8]. A lognormal distribution

yields a good fit.
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A Fig. 4: Probability density p(u) of temporal wind velocity
differences as observed at the airport.
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turbulence, pattern formation in Rayleigh-Benard flows, cosmic
ray statistics, solar flares, networks, and models of share price
evolution [3]. For a particular probability distribution of large-
scale fluctuations of the relevant system parameter, namely the
Gamma-distribution, the corresponding superstatistics reduces to
Tsallis statistics [4], thus reproducing the generalized canonical
distributions of nonextensive statistical mechanics by a plausible
physical mechanism based on fluctuations.

In this article we want to illustrate the general concepts of
superstatistics by a recent example: atmospheric turbulence. Rizzo
and Rapisarda [5, 6] analysed the statistical properties of turbu-
lent wind velocity fluctuations at Florence Airport. The data were
recorded by two head anemometers A and B on two poles 10 m
high a distance 900 m apart at a sampling frequency of 5 min-
utes. Components of spatial wind velocity differences at the two
anemometers A and B as well as of temporal wind velocity differ-
ences at A were investigated.

Analysing these data, two well separated time scales can be
distinguished. On the one hand, the temporal velocity difference
u(t) = v(t + 8) - v(t) (as well as the spatial one) fluctuates on the
rather short time scale 7 (see Fig. 1). On the other hand, we may
also look at a measure of the average activity of the wind bursts in
a given longer time interval, say 1 hour, where the signal behaves
approximately in a Gaussian way. The variance of the signal u(f)
during that time interval is given by ¢* = (u?) - (u)*, where (...)
means taking the average over the given time interval. We then
define a parameter [3(t) by the inverse of this local variance (i.e. B
= 1/0%). B depends on time t, but in a much slower way than the
original signal. Both signals are displayed in Fig. 1. One clearly
recognizes that the typical time scale T on which 3 changes is much
larger than the typical time scale 7 where the velocity (or velocity
difference) changes.

Dividing the wind flow region between A and B into spatial
cells, so that air flows from one cell to another, one assumes that
each cell is characterized by a different value of the local variance
parameter 3, which plays a similar role as the inverse temperature in
Brownian motion and fluctuates on the relatively long spatio-
temporal scale T. As mentioned before, one can then distinguish
two well separated time scales for the wind through the cells: a short
time scale 7 which allows velocity differences u to come to local
equilibrium described by local Gaussians ~ exp[-f+#], and a long
time scale T, which characterizes the long time secular fluctuations
of 8 over many cells. Similar fluctuations of a local variance para-
meter are also observed in financial time series, e.g. for share price
indices, and come under the heading ‘volatility fluctuations’ [7].

A terrestrial example would be a Brownian particle of mass m
moving from cell to cell in an inhomogeneous fluid environment
characterized by an inverse temperature 3 which varies slowly
from cell to cell. The two time scales are then the short local time
scale 7 on which the Brownian particle reaches local equilibrium
and a long global time scale over which [ changes significantly. If
the particle moves for a sufficiently long time through the fluid
then it samples, in the cells it passes through, values of 3 distrib-
uted according to a probability density function f(f3), which leads
to a resulting long-term probability distribution p(v) to find the
Brownian particle in the fluid with velocity v given by p(v) ~
Je ‘lzim"zf( B)dp. This is like a superposition of two statistics in the
sense that p(v) is given by an integral over local statistics given by
the local equilibrium Boltzmann statistics convoluted with the
statistics f() of the 8 occurring in the Boltzmann statistics. In
other words, it is a ‘statistics of a statistics’ or a superstatistics.

Returning now to the atmospheric experiment, it is this super-
statistics which is employed here to analyse the wind data.
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However, there is a fundamental difference in the interpretation of
the corresponding variables: First of all, the variable v (the veloc-
ity of the Brownian particle) corresponds to the longitudinal
velocity difference in the flow (either spatial or temporal), not the
velocity itself. Secondly, since we are analyzing turbulent velocity
fluctuations and not thermal ones, the parameter 3 is a local
variance parameter of the macroscopic turbulent fluctuations and
hence it does not have the physical meaning of an inverse tem-
perature as given by the actual temperature at the airport. Rather,
it is much more related to a suitable power of the local energy
dissipation rate €. The fluctuations of the variance parameter
can be analysed using time windows of different lengths. Rizzo
and Rapisarda carried this out for two time series of interest: for
the temporal fluctuations of the wind velocity component (in the
x-direction) as recorded at the anemometer A and also the spatial
fluctuations as given by the longitudinal wind velocity differences
between the anemometers A and B. The probability distribution
of B as obtained for the temporal case is shown in Fig. 2 for a
time window of 1 hour. For comparison, the dashed (blue) line
shows a Gamma or jy’-distribution function, which is of the
general form f(f8) ~ B<'e?'®, with b and ¢ appropriate constants.
The solid (red) line represents a lognormal distribution function
which is of the general form f(8) ~ (1/s) exp[-(log(B/))* /(2s?)],
with t and s appropriate constants. Apparently, the data are rea-
sonably well fitted by a lognormal distribution (note that a
different conclusion was reached by Rizzo and Rapisarda in [5, 6])
We see that our result for atmospheric turbulence is similar to lab-
oratory turbulence experiments on much smaller space and time
scales, such as a turbulent Taylor-Couette flow as generated by two
rotating cylinders. For Taylor-Couette flow it has been shown [8]
that fis indeed lognormally distributed, see Fig. 3.

In general, for a given nonequilibrium system the probability
density of the parameter is ultimately determined by the under-
lying spatio-temporal dynamics of the system under consideration.

The Gamma distribution results if § can be represented by a
sum of n independent squared Gaussian random variables X;
(with i = 1; ...; n) with mean zero, i.e. =21, X;> 0. The con-
stants ¢ and b above are related to n.

The lognormal distribution results if 3 is due to a multiplica-
tive cascade process, i.e. if it can be represented by a product of n
independent positive random variables &;, i.e. B =], & or
log B =214, log &;. Due to the Central Limit Theorem, under
suitable rescaling the latter sum will become Gaussian for large 7.
But if log is Gaussian this means that 3 is lognormally distributed.

We notice that the difference between the Gamma distribution
and the lognormal distribution is essentially that of an additive
versus a multiplicative definition of . So far there is no theory of
turbulence, but following Kolmogorov [1], the mechanism of the
turbulent motion of the fluid is critically determined by the trans-
fer mechanism of the energy dissipation between neighboring cells
and between different spatial scales in the flow. A multiplicative
cascade process is expected to lead to a lognormally distributed f.
It seems that the above mentioned transfer mechanism for energy
dissipation is similar for turbulent wind fluctuations and laborato-
ry turbulence, which are performed under very different
conditions. The spatial scale of environmental turbulence as mea-
sured at the airport is much larger than in the laboratory, moreover
the Reynolds number fluctuates for the wind measurements,
whereas in the laboratory experiments it is controlled.

The probability density p(u) of longitudinal wind velocity dif-
ferences u (either temporal or spatial) as measured at the airport
has strong deviations from a Gaussian distribution and it exhibits
prominent (‘fat’) tails (see Fig. 4). In superstatistical models one
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can understand these tails simply from a superposition of
Gaussian distributions whose inverse variance f fluctuates on a
rather large spatio-temporal scale. In the long-term run one has
p(u) ~  [5 f(PeP*dpB, and generically these types of distribu-
tions p(u) exhibit broader tails than a Gaussian.

For the special case that f(f3) is a Gamma distribution the
integral can be explicitely evaluated, and one ends up with the
generalized canonical distributions (g-exponentials) of nonexten-
sive statistical mechanics, i.e. p(u) ~ (1+B(q-1) %uz)’ﬁ , where B
is proportional to the average of S and q is an entropic parameter
[2, 4]. These distributions asymptotically decay with a power law.
For other f(B) (such as the lognormal distributions relevant in our
case), the integral cannot be evaluated explicitly, and more com-
plicated behaviour arises. However, it can be shown that for
sharply peaked distributions f(f3) a g-exponential for p(u) is
often a good approximation provided |u] is not too large [2].

Quite generally, the superstatistics approach also gives a plau-
sible physical interpretation to the entropic index g. One may
generally define

(B

=
where (B)= [ f(B)BdB and {B°)= [ f(B)B*dB denote the average

and second moment of f3, respectively. Clearly, if there are no
fluctuations in Bat all but B1is fixed to a constant value 3y, one has
(B)={(B)*= Bi, hence in this case one just obtains g = 1 and ordi-
nary statistical mechanics arises. On the other hand, if there are
temperature fluctuations (as in most nonequilibrium situations)
then those are effectively described by g > 1. For the special case
that f(f) is a Gamma-distribution, the g obtained by eq. (1)
coincides with Tsallis” entropic index q (up to some minor cor-
rection arising from the local 3-dependent normalization
constants). But the superstatistics concept is more general in that
it also allows for other distributions f(f3), as for example the log-
normal distribution observed in Fig. 2 and 3. General
superstatistics can lead to a variety of distributions p(u) with
prominent (’fat’) tails, i.e. not only power laws but, for example,
also stretched exponentials tails and much more. The atmos-
pheric turbulence data seem roughly consistent with
Kolomogorov’s general ideas of a lognormally distributed fluctu-
ating energy dissipation rate, as are the laboratory turbulence
data. In that connection comparison with long range oceanic
measurements of a similar kind as the atmospheric wind experi-
ments discussed here might be instructive, testing yet larger scales.
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